| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmclsopn | Structured version Visualization version GIF version | ||
| Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cmclsopn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsval2 22971 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 3 | 2 | difeq2d 4075 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆))))) |
| 4 | difss 4085 | . . . . . . 7 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
| 5 | 1 | ntropn 22970 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
| 6 | 4, 5 | mpan2 691 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
| 7 | 1 | eltopss 22828 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
| 8 | 6, 7 | mpdan 687 | . . . . 5 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
| 9 | dfss4 4218 | . . . . 5 ⊢ (((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) | |
| 10 | 8, 9 | sylib 218 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) |
| 11 | 10, 6 | eqeltrd 2831 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
| 13 | 3, 12 | eqeltrd 2831 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ∪ cuni 4858 ‘cfv 6487 Topctop 22814 intcnt 22938 clsccl 22939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-top 22815 df-cld 22940 df-ntr 22941 df-cls 22942 |
| This theorem is referenced by: elcls 22994 |
| Copyright terms: Public domain | W3C validator |