![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmclsopn | Structured version Visualization version GIF version |
Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cmclsopn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsval2 21273 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) |
3 | 2 | difeq2d 3951 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆))))) |
4 | difss 3960 | . . . . . . 7 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
5 | 1 | ntropn 21272 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
6 | 4, 5 | mpan2 681 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
7 | 1 | eltopss 21130 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
8 | 6, 7 | mpdan 677 | . . . . 5 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
9 | dfss4 4085 | . . . . 5 ⊢ (((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) | |
10 | 8, 9 | sylib 210 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) |
11 | 10, 6 | eqeltrd 2859 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
12 | 11 | adantr 474 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
13 | 3, 12 | eqeltrd 2859 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 ⊆ wss 3792 ∪ cuni 4673 ‘cfv 6137 Topctop 21116 intcnt 21240 clsccl 21241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-top 21117 df-cld 21242 df-ntr 21243 df-cls 21244 |
This theorem is referenced by: elcls 21296 |
Copyright terms: Public domain | W3C validator |