MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmclsopn Structured version   Visualization version   GIF version

Theorem cmclsopn 23035
Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cmclsopn ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)

Proof of Theorem cmclsopn
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21clsval2 23023 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))
32difeq2d 4108 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆)))))
4 difss 4118 . . . . . . 7 (𝑋𝑆) ⊆ 𝑋
51ntropn 23022 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝑆)) ∈ 𝐽)
64, 5mpan2 691 . . . . . 6 (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋𝑆)) ∈ 𝐽)
71eltopss 22880 . . . . . 6 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋𝑆)) ∈ 𝐽) → ((int‘𝐽)‘(𝑋𝑆)) ⊆ 𝑋)
86, 7mpdan 687 . . . . 5 (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋𝑆)) ⊆ 𝑋)
9 dfss4 4251 . . . . 5 (((int‘𝐽)‘(𝑋𝑆)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆)))) = ((int‘𝐽)‘(𝑋𝑆)))
108, 9sylib 218 . . . 4 (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆)))) = ((int‘𝐽)‘(𝑋𝑆)))
1110, 6eqeltrd 2833 . . 3 (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆)))) ∈ 𝐽)
1211adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆)))) ∈ 𝐽)
133, 12eqeltrd 2833 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3930  wss 3933   cuni 4889  cfv 6542  Topctop 22866  intcnt 22990  clsccl 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22867  df-cld 22992  df-ntr 22993  df-cls 22994
This theorem is referenced by:  elcls  23046
  Copyright terms: Public domain W3C validator