Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmclsopn | Structured version Visualization version GIF version |
Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cmclsopn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsval2 22109 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) |
3 | 2 | difeq2d 4053 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆))))) |
4 | difss 4062 | . . . . . . 7 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
5 | 1 | ntropn 22108 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
6 | 4, 5 | mpan2 687 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
7 | 1 | eltopss 21964 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
8 | 6, 7 | mpdan 683 | . . . . 5 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
9 | dfss4 4189 | . . . . 5 ⊢ (((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) |
11 | 10, 6 | eqeltrd 2839 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
12 | 11 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
13 | 3, 12 | eqeltrd 2839 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 intcnt 22076 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-ntr 22079 df-cls 22080 |
This theorem is referenced by: elcls 22132 |
Copyright terms: Public domain | W3C validator |