| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmclsopn | Structured version Visualization version GIF version | ||
| Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cmclsopn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsval2 22958 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 3 | 2 | difeq2d 4074 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆))))) |
| 4 | difss 4084 | . . . . . . 7 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
| 5 | 1 | ntropn 22957 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
| 6 | 4, 5 | mpan2 691 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) |
| 7 | 1 | eltopss 22815 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ∈ 𝐽) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
| 8 | 6, 7 | mpdan 687 | . . . . 5 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋) |
| 9 | dfss4 4217 | . . . . 5 ⊢ (((int‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) | |
| 10 | 8, 9 | sylib 218 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) = ((int‘𝐽)‘(𝑋 ∖ 𝑆))) |
| 11 | 10, 6 | eqeltrd 2829 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) ∈ 𝐽) |
| 13 | 3, 12 | eqeltrd 2829 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 ⊆ wss 3900 ∪ cuni 4857 ‘cfv 6477 Topctop 22801 intcnt 22925 clsccl 22926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-top 22802 df-cld 22927 df-ntr 22928 df-cls 22929 |
| This theorem is referenced by: elcls 22981 |
| Copyright terms: Public domain | W3C validator |