MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrss3 Structured version   Visualization version   GIF version

Theorem ntrss3 22784
Description: The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ntrss3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) βŠ† 𝑋)

Proof of Theorem ntrss3
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = βˆͺ 𝐽
21ntropn 22773 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) ∈ 𝐽)
31eltopss 22629 . 2 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π‘†) ∈ 𝐽) β†’ ((intβ€˜π½)β€˜π‘†) βŠ† 𝑋)
42, 3syldan 589 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) βŠ† 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104   βŠ† wss 3947  βˆͺ cuni 4907  β€˜cfv 6542  Topctop 22615  intcnt 22741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22616  df-ntr 22744
This theorem is referenced by:  ntridm  22792  hmeontr  23493  bcthlem5  25076  perfdvf  25652  ubthlem1  30390  opnregcld  35518  cldregopn  35519
  Copyright terms: Public domain W3C validator