Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnssneib | Structured version Visualization version GIF version |
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnssneib | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → 𝑁 ⊆ 𝑋) | |
2 | sseq2 3952 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑆)) | |
3 | sseq1 3951 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑔 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁)) | |
4 | 2, 3 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁))) |
5 | ssid 3948 | . . . . . . . . . 10 ⊢ 𝑆 ⊆ 𝑆 | |
6 | 5 | biantrur 531 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝑁 ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁)) |
7 | 4, 6 | bitr4di 289 | . . . . . . . 8 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ 𝑆 ⊆ 𝑁)) |
8 | 7 | rspcev 3561 | . . . . . . 7 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 8 | adantlr 712 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 1, 9 | jca 512 | . . . . 5 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
11 | 10 | ex 413 | . . . 4 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | 3adant1 1129 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | neips.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
14 | 13 | eltopss 22054 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
15 | 13 | isnei 22252 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
16 | 14, 15 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 16 | 3adant3 1131 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 12, 17 | sylibrd 258 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
19 | ssnei 22259 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
20 | 19 | ex 413 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
21 | 20 | 3ad2ant1 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
22 | 18, 21 | impbid 211 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ⊆ wss 3892 ∪ cuni 4845 ‘cfv 6432 Topctop 22040 neicnei 22246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-top 22041 df-nei 22247 |
This theorem is referenced by: neissex 22276 |
Copyright terms: Public domain | W3C validator |