MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnssneib Structured version   Visualization version   GIF version

Theorem opnssneib 22264
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnssneib ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnssneib
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simplr 766 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → 𝑁𝑋)
2 sseq2 3952 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑆𝑔𝑆𝑆))
3 sseq1 3951 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑔𝑁𝑆𝑁))
42, 3anbi12d 631 . . . . . . . . 9 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑆𝑆𝑁)))
5 ssid 3948 . . . . . . . . . 10 𝑆𝑆
65biantrur 531 . . . . . . . . 9 (𝑆𝑁 ↔ (𝑆𝑆𝑆𝑁))
74, 6bitr4di 289 . . . . . . . 8 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ 𝑆𝑁))
87rspcev 3561 . . . . . . 7 ((𝑆𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
98adantlr 712 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
101, 9jca 512 . . . . 5 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
1110ex 413 . . . 4 ((𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
12113adant1 1129 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
13 neips.1 . . . . . 6 𝑋 = 𝐽
1413eltopss 22054 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
1513isnei 22252 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1614, 15syldan 591 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
17163adant3 1131 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1812, 17sylibrd 258 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
19 ssnei 22259 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
2019ex 413 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
21203ad2ant1 1132 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
2218, 21impbid 211 1 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wrex 3067  wss 3892   cuni 4845  cfv 6432  Topctop 22040  neicnei 22246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-top 22041  df-nei 22247
This theorem is referenced by:  neissex  22276
  Copyright terms: Public domain W3C validator