![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnssneib | Structured version Visualization version GIF version |
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnssneib | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → 𝑁 ⊆ 𝑋) | |
2 | sseq2 4021 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑆)) | |
3 | sseq1 4020 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑔 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁)) | |
4 | 2, 3 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁))) |
5 | ssid 4017 | . . . . . . . . . 10 ⊢ 𝑆 ⊆ 𝑆 | |
6 | 5 | biantrur 530 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝑁 ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁)) |
7 | 4, 6 | bitr4di 289 | . . . . . . . 8 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ 𝑆 ⊆ 𝑁)) |
8 | 7 | rspcev 3621 | . . . . . . 7 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 8 | adantlr 715 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 1, 9 | jca 511 | . . . . 5 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
11 | 10 | ex 412 | . . . 4 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | 3adant1 1129 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | neips.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
14 | 13 | eltopss 22928 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
15 | 13 | isnei 23126 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
16 | 14, 15 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 16 | 3adant3 1131 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 12, 17 | sylibrd 259 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
19 | ssnei 23133 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
20 | 19 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
21 | 20 | 3ad2ant1 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
22 | 18, 21 | impbid 212 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 neicnei 23120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-top 22915 df-nei 23121 |
This theorem is referenced by: neissex 23150 |
Copyright terms: Public domain | W3C validator |