![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnssneib | Structured version Visualization version GIF version |
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnssneib | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → 𝑁 ⊆ 𝑋) | |
2 | sseq2 4035 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑆)) | |
3 | sseq1 4034 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑔 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁)) | |
4 | 2, 3 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁))) |
5 | ssid 4031 | . . . . . . . . . 10 ⊢ 𝑆 ⊆ 𝑆 | |
6 | 5 | biantrur 530 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝑁 ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁)) |
7 | 4, 6 | bitr4di 289 | . . . . . . . 8 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ 𝑆 ⊆ 𝑁)) |
8 | 7 | rspcev 3635 | . . . . . . 7 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 8 | adantlr 714 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 1, 9 | jca 511 | . . . . 5 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
11 | 10 | ex 412 | . . . 4 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | 3adant1 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | neips.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
14 | 13 | eltopss 22934 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
15 | 13 | isnei 23132 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
16 | 14, 15 | syldan 590 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 16 | 3adant3 1132 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 12, 17 | sylibrd 259 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
19 | ssnei 23139 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
20 | 19 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
21 | 20 | 3ad2ant1 1133 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
22 | 18, 21 | impbid 212 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 neicnei 23126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-nei 23127 |
This theorem is referenced by: neissex 23156 |
Copyright terms: Public domain | W3C validator |