MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelgOLD Structured version   Visualization version   GIF version

Theorem epelgOLD 5465
Description: Obsolete version of epelg 5464 as of 14-Jul-2023. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
epelgOLD (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelgOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5063 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 elopab 5410 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦))
3 vex 3502 . . . . . . . . . . 11 𝑥 ∈ V
4 vex 3502 . . . . . . . . . . 11 𝑦 ∈ V
53, 4pm3.2i 471 . . . . . . . . . 10 (𝑥 ∈ V ∧ 𝑦 ∈ V)
6 opeqex 5384 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
75, 6mpbiri 259 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87simpld 495 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
98adantr 481 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦) → 𝐴 ∈ V)
109exlimivv 1926 . . . . . 6 (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦) → 𝐴 ∈ V)
112, 10sylbi 218 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} → 𝐴 ∈ V)
12 df-eprel 5463 . . . . 5 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1311, 12eleq2s 2935 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
141, 13sylbi 218 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
16 elex 3517 . . 3 (𝐴𝐵𝐴 ∈ V)
1716a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
18 eleq12 2906 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1918, 12brabga 5417 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
2019expcom 414 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
2115, 17, 20pm5.21ndd 381 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  Vcvv 3499  cop 4569   class class class wbr 5062  {copab 5124   E cep 5462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-br 5063  df-opab 5125  df-eprel 5463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator