![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelsymb | Structured version Visualization version GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelsymb.1 | ⊢ (𝜑 → EqvRel 𝑅) |
Ref | Expression |
---|---|
eqvrelsymb | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelsymb.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → EqvRel 𝑅) |
3 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | 2, 3 | eqvrelsym 37096 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
5 | 1 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → EqvRel 𝑅) |
6 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐵𝑅𝐴) | |
7 | 5, 6 | eqvrelsym 37096 | . 2 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐵) |
8 | 4, 7 | impbida 800 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 class class class wbr 5110 EqvRel weqvrel 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-refrel 37003 df-symrel 37035 df-trrel 37065 df-eqvrel 37076 |
This theorem is referenced by: eqvrelth 37102 |
Copyright terms: Public domain | W3C validator |