Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelsymb Structured version   Visualization version   GIF version

Theorem eqvrelsymb 37097
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.)
Hypothesis
Ref Expression
eqvrelsymb.1 (𝜑 → EqvRel 𝑅)
Assertion
Ref Expression
eqvrelsymb (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem eqvrelsymb
StepHypRef Expression
1 eqvrelsymb.1 . . . 4 (𝜑 → EqvRel 𝑅)
21adantr 482 . . 3 ((𝜑𝐴𝑅𝐵) → EqvRel 𝑅)
3 simpr 486 . . 3 ((𝜑𝐴𝑅𝐵) → 𝐴𝑅𝐵)
42, 3eqvrelsym 37096 . 2 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51adantr 482 . . 3 ((𝜑𝐵𝑅𝐴) → EqvRel 𝑅)
6 simpr 486 . . 3 ((𝜑𝐵𝑅𝐴) → 𝐵𝑅𝐴)
75, 6eqvrelsym 37096 . 2 ((𝜑𝐵𝑅𝐴) → 𝐴𝑅𝐵)
84, 7impbida 800 1 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   class class class wbr 5110   EqvRel weqvrel 36680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-refrel 37003  df-symrel 37035  df-trrel 37065  df-eqvrel 37076
This theorem is referenced by:  eqvrelth  37102
  Copyright terms: Public domain W3C validator