Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelsymb Structured version   Visualization version   GIF version

Theorem eqvrelsymb 38712
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.)
Hypothesis
Ref Expression
eqvrelsymb.1 (𝜑 → EqvRel 𝑅)
Assertion
Ref Expression
eqvrelsymb (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem eqvrelsymb
StepHypRef Expression
1 eqvrelsymb.1 . . . 4 (𝜑 → EqvRel 𝑅)
21adantr 480 . . 3 ((𝜑𝐴𝑅𝐵) → EqvRel 𝑅)
3 simpr 484 . . 3 ((𝜑𝐴𝑅𝐵) → 𝐴𝑅𝐵)
42, 3eqvrelsym 38711 . 2 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51adantr 480 . . 3 ((𝜑𝐵𝑅𝐴) → EqvRel 𝑅)
6 simpr 484 . . 3 ((𝜑𝐵𝑅𝐴) → 𝐵𝑅𝐴)
75, 6eqvrelsym 38711 . 2 ((𝜑𝐵𝑅𝐴) → 𝐴𝑅𝐵)
84, 7impbida 800 1 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   class class class wbr 5089   EqvRel weqvrel 38249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-refrel 38614  df-symrel 38646  df-trrel 38680  df-eqvrel 38691
This theorem is referenced by:  eqvrelth  38717
  Copyright terms: Public domain W3C validator