| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelsymb | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvrelsymb.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| Ref | Expression |
|---|---|
| eqvrelsymb | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelsymb.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → EqvRel 𝑅) |
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | 2, 3 | eqvrelsym 38596 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
| 5 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → EqvRel 𝑅) |
| 6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐵𝑅𝐴) | |
| 7 | 5, 6 | eqvrelsym 38596 | . 2 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐵) |
| 8 | 4, 7 | impbida 800 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 class class class wbr 5107 EqvRel weqvrel 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-refrel 38503 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 |
| This theorem is referenced by: eqvrelth 38602 |
| Copyright terms: Public domain | W3C validator |