![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltr | Structured version Visualization version GIF version |
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvreltr.1 | ⊢ (𝜑 → EqvRel 𝑅) |
Ref | Expression |
---|---|
eqvreltr | ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreltr.1 | . . . . . . 7 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvrelrel 38553 | . . . . . . 7 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel 𝑅) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
5 | brrelex1 5753 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐶) → 𝐵 ∈ V) | |
6 | 3, 4, 5 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐵 ∈ V) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) | |
8 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
9 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
10 | 8, 9 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) |
11 | 6, 7, 10 | spcedv 3611 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶)) |
12 | simpl 482 | . . . . . 6 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
13 | brrelex1 5753 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
14 | 3, 12, 13 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴 ∈ V) |
15 | brrelex2 5754 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V) | |
16 | 3, 4, 15 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐶 ∈ V) |
17 | brcog 5891 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) | |
18 | 14, 16, 17 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) |
19 | 11, 18 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴(𝑅 ∘ 𝑅)𝐶) |
20 | 19 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴(𝑅 ∘ 𝑅)𝐶)) |
21 | dfeqvrel2 38546 | . . . . . 6 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
22 | 21 | simplbi 497 | . . . . 5 ⊢ ( EqvRel 𝑅 → (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
23 | 22 | simp3d 1144 | . . . 4 ⊢ ( EqvRel 𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
24 | 1, 23 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
25 | 24 | ssbrd 5209 | . 2 ⊢ (𝜑 → (𝐴(𝑅 ∘ 𝑅)𝐶 → 𝐴𝑅𝐶)) |
26 | 20, 25 | syld 47 | 1 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 I cid 5592 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 EqvRel weqvrel 38152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-refrel 38468 df-symrel 38500 df-trrel 38530 df-eqvrel 38541 |
This theorem is referenced by: eqvreltrd 38564 eqvrelth 38567 |
Copyright terms: Public domain | W3C validator |