Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltr | Structured version Visualization version GIF version |
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvreltr.1 | ⊢ (𝜑 → EqvRel 𝑅) |
Ref | Expression |
---|---|
eqvreltr | ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreltr.1 | . . . . . . 7 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvrelrel 36452 | . . . . . . 7 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel 𝑅) |
4 | simpr 488 | . . . . . 6 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
5 | brrelex1 5607 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐶) → 𝐵 ∈ V) | |
6 | 3, 4, 5 | syl2an 599 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐵 ∈ V) |
7 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) | |
8 | breq2 5062 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
9 | breq1 5061 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
10 | 8, 9 | anbi12d 634 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) |
11 | 6, 7, 10 | spcedv 3518 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶)) |
12 | simpl 486 | . . . . . 6 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
13 | brrelex1 5607 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
14 | 3, 12, 13 | syl2an 599 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴 ∈ V) |
15 | brrelex2 5608 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V) | |
16 | 3, 4, 15 | syl2an 599 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐶 ∈ V) |
17 | brcog 5740 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) | |
18 | 14, 16, 17 | syl2anc 587 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) |
19 | 11, 18 | mpbird 260 | . . 3 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴(𝑅 ∘ 𝑅)𝐶) |
20 | 19 | ex 416 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴(𝑅 ∘ 𝑅)𝐶)) |
21 | dfeqvrel2 36445 | . . . . . 6 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
22 | 21 | simplbi 501 | . . . . 5 ⊢ ( EqvRel 𝑅 → (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
23 | 22 | simp3d 1146 | . . . 4 ⊢ ( EqvRel 𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
24 | 1, 23 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
25 | 24 | ssbrd 5101 | . 2 ⊢ (𝜑 → (𝐴(𝑅 ∘ 𝑅)𝐶 → 𝐴𝑅𝐶)) |
26 | 20, 25 | syld 47 | 1 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∃wex 1787 ∈ wcel 2110 Vcvv 3413 ⊆ wss 3871 class class class wbr 5058 I cid 5459 ◡ccnv 5555 dom cdm 5556 ↾ cres 5558 ∘ ccom 5560 Rel wrel 5561 EqvRel weqvrel 36092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pr 5327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-sn 4547 df-pr 4549 df-op 4553 df-br 5059 df-opab 5121 df-id 5460 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-refrel 36372 df-symrel 36400 df-trrel 36430 df-eqvrel 36440 |
This theorem is referenced by: eqvreltrd 36463 eqvrelth 36466 |
Copyright terms: Public domain | W3C validator |