Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreltr Structured version   Visualization version   GIF version

Theorem eqvreltr 38209
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypothesis
Ref Expression
eqvreltr.1 (𝜑 → EqvRel 𝑅)
Assertion
Ref Expression
eqvreltr (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))

Proof of Theorem eqvreltr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqvreltr.1 . . . . . . 7 (𝜑 → EqvRel 𝑅)
2 eqvrelrel 38199 . . . . . . 7 ( EqvRel 𝑅 → Rel 𝑅)
31, 2syl 17 . . . . . 6 (𝜑 → Rel 𝑅)
4 simpr 483 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐵𝑅𝐶)
5 brrelex1 5731 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
63, 4, 5syl2an 594 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐵 ∈ V)
7 simpr 483 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
8 breq2 5153 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
9 breq1 5152 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝐶𝐵𝑅𝐶))
108, 9anbi12d 630 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑅𝑥𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
116, 7, 10spcedv 3582 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶))
12 simpl 481 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐵)
13 brrelex1 5731 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
143, 12, 13syl2an 594 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴 ∈ V)
15 brrelex2 5732 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
163, 4, 15syl2an 594 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐶 ∈ V)
17 brcog 5869 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1814, 16, 17syl2anc 582 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1911, 18mpbird 256 . . 3 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴(𝑅𝑅)𝐶)
2019ex 411 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴(𝑅𝑅)𝐶))
21 dfeqvrel2 38192 . . . . . 6 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
2221simplbi 496 . . . . 5 ( EqvRel 𝑅 → (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅))
2322simp3d 1141 . . . 4 ( EqvRel 𝑅 → (𝑅𝑅) ⊆ 𝑅)
241, 23syl 17 . . 3 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2524ssbrd 5192 . 2 (𝜑 → (𝐴(𝑅𝑅)𝐶𝐴𝑅𝐶))
2620, 25syld 47 1 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  Vcvv 3461  wss 3944   class class class wbr 5149   I cid 5575  ccnv 5677  dom cdm 5678  cres 5680  ccom 5682  Rel wrel 5683   EqvRel weqvrel 37796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-refrel 38114  df-symrel 38146  df-trrel 38176  df-eqvrel 38187
This theorem is referenced by:  eqvreltrd  38210  eqvrelth  38213
  Copyright terms: Public domain W3C validator