![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltr | Structured version Visualization version GIF version |
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvreltr.1 | ⊢ (𝜑 → EqvRel 𝑅) |
Ref | Expression |
---|---|
eqvreltr | ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreltr.1 | . . . . . . 7 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvrelrel 37980 | . . . . . . 7 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel 𝑅) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
5 | brrelex1 5722 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐶) → 𝐵 ∈ V) | |
6 | 3, 4, 5 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐵 ∈ V) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) | |
8 | breq2 5145 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
9 | breq1 5144 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
10 | 8, 9 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) |
11 | 6, 7, 10 | spcedv 3582 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶)) |
12 | simpl 482 | . . . . . 6 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
13 | brrelex1 5722 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
14 | 3, 12, 13 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴 ∈ V) |
15 | brrelex2 5723 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V) | |
16 | 3, 4, 15 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐶 ∈ V) |
17 | brcog 5860 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) | |
18 | 14, 16, 17 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) |
19 | 11, 18 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴(𝑅 ∘ 𝑅)𝐶) |
20 | 19 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴(𝑅 ∘ 𝑅)𝐶)) |
21 | dfeqvrel2 37973 | . . . . . 6 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
22 | 21 | simplbi 497 | . . . . 5 ⊢ ( EqvRel 𝑅 → (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
23 | 22 | simp3d 1141 | . . . 4 ⊢ ( EqvRel 𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
24 | 1, 23 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
25 | 24 | ssbrd 5184 | . 2 ⊢ (𝜑 → (𝐴(𝑅 ∘ 𝑅)𝐶 → 𝐴𝑅𝐶)) |
26 | 20, 25 | syld 47 | 1 ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 I cid 5566 ◡ccnv 5668 dom cdm 5669 ↾ cres 5671 ∘ ccom 5673 Rel wrel 5674 EqvRel weqvrel 37573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-refrel 37895 df-symrel 37927 df-trrel 37957 df-eqvrel 37968 |
This theorem is referenced by: eqvreltrd 37991 eqvrelth 37994 |
Copyright terms: Public domain | W3C validator |