Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreltr Structured version   Visualization version   GIF version

Theorem eqvreltr 34897
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypothesis
Ref Expression
eqvreltr.1 (𝜑 → EqvRel 𝑅)
Assertion
Ref Expression
eqvreltr (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))

Proof of Theorem eqvreltr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqvreltr.1 . . . . . . 7 (𝜑 → EqvRel 𝑅)
2 eqvrelrel 34887 . . . . . . 7 ( EqvRel 𝑅 → Rel 𝑅)
31, 2syl 17 . . . . . 6 (𝜑 → Rel 𝑅)
4 simpr 479 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐵𝑅𝐶)
5 brrelex1 5390 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
63, 4, 5syl2an 591 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐵 ∈ V)
7 simpr 479 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
8 breq2 4877 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
9 breq1 4876 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝐶𝐵𝑅𝐶))
108, 9anbi12d 626 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑅𝑥𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
116, 7, 10elabd 3573 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶))
12 simpl 476 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐵)
13 brrelex1 5390 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
143, 12, 13syl2an 591 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴 ∈ V)
15 brrelex2 5391 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
163, 4, 15syl2an 591 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐶 ∈ V)
17 brcog 5521 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1814, 16, 17syl2anc 581 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1911, 18mpbird 249 . . 3 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴(𝑅𝑅)𝐶)
2019ex 403 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴(𝑅𝑅)𝐶))
21 dfeqvrel2 34882 . . . . . 6 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
2221simplbi 493 . . . . 5 ( EqvRel 𝑅 → (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅))
2322simp3d 1180 . . . 4 ( EqvRel 𝑅 → (𝑅𝑅) ⊆ 𝑅)
241, 23syl 17 . . 3 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2524ssbrd 4916 . 2 (𝜑 → (𝐴(𝑅𝑅)𝐶𝐴𝑅𝐶))
2620, 25syld 47 1 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wex 1880  wcel 2166  Vcvv 3414  wss 3798   class class class wbr 4873   I cid 5249  ccnv 5341  dom cdm 5342  cres 5344  ccom 5346  Rel wrel 5347   EqvRel weqvrel 34541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4874  df-opab 4936  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-refrel 34810  df-symrel 34838  df-trrel 34868  df-eqvrel 34878
This theorem is referenced by:  eqvreltrd  34898  eqvrelth  34901
  Copyright terms: Public domain W3C validator