Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpad Structured version   Visualization version   GIF version

Theorem esumpad 31388
Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.)
Hypotheses
Ref Expression
esumpad.1 (𝜑𝐴𝑉)
esumpad.2 (𝜑𝐵𝑊)
esumpad.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumpad.4 ((𝜑𝑘𝐵) → 𝐶 = 0)
Assertion
Ref Expression
esumpad (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑊(𝑘)

Proof of Theorem esumpad
StepHypRef Expression
1 nfv 1915 . . 3 𝑘𝜑
2 nfcv 2979 . . 3 𝑘𝐴
3 nfcv 2979 . . 3 𝑘(𝐵𝐴)
4 esumpad.1 . . . 4 (𝜑𝐴𝑉)
5 elex 3487 . . . 4 (𝐴𝑉𝐴 ∈ V)
64, 5syl 17 . . 3 (𝜑𝐴 ∈ V)
7 esumpad.2 . . . 4 (𝜑𝐵𝑊)
8 difexg 5207 . . . 4 (𝐵𝑊 → (𝐵𝐴) ∈ V)
97, 8syl 17 . . 3 (𝜑 → (𝐵𝐴) ∈ V)
10 disjdif 4393 . . . 4 (𝐴 ∩ (𝐵𝐴)) = ∅
1110a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
12 esumpad.3 . . 3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
13 difssd 4084 . . . . 5 (𝜑 → (𝐵𝐴) ⊆ 𝐵)
1413sselda 3942 . . . 4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝑘𝐵)
15 esumpad.4 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 = 0)
16 0e0iccpnf 12837 . . . . 5 0 ∈ (0[,]+∞)
1715, 16eqeltrdi 2922 . . . 4 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1814, 17syldan 594 . . 3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ (0[,]+∞))
191, 2, 3, 6, 9, 11, 12, 18esumsplit 31386 . 2 (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶))
20 undif2 4397 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
21 esumeq1 31367 . . . 4 ((𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵) → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2220, 21ax-mp 5 . . 3 Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶
2322a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2414, 15syldan 594 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
2524ralrimiva 3174 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
261, 25esumeq2d 31370 . . . . 5 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)𝐶 = Σ*𝑘 ∈ (𝐵𝐴)0)
273esum0 31382 . . . . . 6 ((𝐵𝐴) ∈ V → Σ*𝑘 ∈ (𝐵𝐴)0 = 0)
289, 27syl 17 . . . . 5 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)0 = 0)
2926, 28eqtrd 2857 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)𝐶 = 0)
3029oveq2d 7156 . . 3 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶) = (Σ*𝑘𝐴𝐶 +𝑒 0))
31 iccssxr 12808 . . . . 5 (0[,]+∞) ⊆ ℝ*
3212ralrimiva 3174 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (0[,]+∞))
332esumcl 31363 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
344, 32, 33syl2anc 587 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
3531, 34sseldi 3940 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ℝ*)
36 xaddid1 12622 . . . 4 *𝑘𝐴𝐶 ∈ ℝ* → (Σ*𝑘𝐴𝐶 +𝑒 0) = Σ*𝑘𝐴𝐶)
3735, 36syl 17 . . 3 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 0) = Σ*𝑘𝐴𝐶)
3830, 37eqtrd 2857 . 2 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶) = Σ*𝑘𝐴𝐶)
3919, 23, 383eqtr3d 2865 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  wral 3130  Vcvv 3469  cdif 3905  cun 3906  cin 3907  c0 4265  (class class class)co 7140  0cc0 10526  +∞cpnf 10661  *cxr 10663   +𝑒 cxad 12493  [,]cicc 12729  Σ*cesum 31360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-sin 15414  df-cos 15415  df-pi 15417  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-ordt 16765  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-ps 17801  df-tsr 17802  df-plusf 17842  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-mulg 18216  df-subg 18267  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-subrg 19524  df-abv 19579  df-lmod 19627  df-scaf 19628  df-sra 19935  df-rgmod 19936  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-tmd 22675  df-tgp 22676  df-tsms 22730  df-trg 22763  df-xms 22925  df-ms 22926  df-tms 22927  df-nm 23187  df-ngp 23188  df-nrg 23190  df-nlm 23191  df-ii 23480  df-cncf 23481  df-limc 24467  df-dv 24468  df-log 25146  df-esum 31361
This theorem is referenced by:  esumpad2  31389  carsggect  31650
  Copyright terms: Public domain W3C validator