Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpad Structured version   Visualization version   GIF version

Theorem esumpad 34049
Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.)
Hypotheses
Ref Expression
esumpad.1 (𝜑𝐴𝑉)
esumpad.2 (𝜑𝐵𝑊)
esumpad.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumpad.4 ((𝜑𝑘𝐵) → 𝐶 = 0)
Assertion
Ref Expression
esumpad (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑊(𝑘)

Proof of Theorem esumpad
StepHypRef Expression
1 nfv 1913 . . 3 𝑘𝜑
2 nfcv 2904 . . 3 𝑘𝐴
3 nfcv 2904 . . 3 𝑘(𝐵𝐴)
4 esumpad.1 . . . 4 (𝜑𝐴𝑉)
5 elex 3500 . . . 4 (𝐴𝑉𝐴 ∈ V)
64, 5syl 17 . . 3 (𝜑𝐴 ∈ V)
7 esumpad.2 . . . 4 (𝜑𝐵𝑊)
87difexd 5338 . . 3 (𝜑 → (𝐵𝐴) ∈ V)
9 disjdif 4479 . . . 4 (𝐴 ∩ (𝐵𝐴)) = ∅
109a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
11 esumpad.3 . . 3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
12 difssd 4148 . . . . 5 (𝜑 → (𝐵𝐴) ⊆ 𝐵)
1312sselda 3996 . . . 4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝑘𝐵)
14 esumpad.4 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 = 0)
15 0e0iccpnf 13502 . . . . 5 0 ∈ (0[,]+∞)
1614, 15eqeltrdi 2848 . . . 4 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1713, 16syldan 591 . . 3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ (0[,]+∞))
181, 2, 3, 6, 8, 10, 11, 17esumsplit 34047 . 2 (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶))
19 undif2 4484 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
20 esumeq1 34028 . . . 4 ((𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵) → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2119, 20ax-mp 5 . . 3 Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶
2221a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2313, 14syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
2423ralrimiva 3145 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
251, 24esumeq2d 34031 . . . . 5 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)𝐶 = Σ*𝑘 ∈ (𝐵𝐴)0)
263esum0 34043 . . . . . 6 ((𝐵𝐴) ∈ V → Σ*𝑘 ∈ (𝐵𝐴)0 = 0)
278, 26syl 17 . . . . 5 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)0 = 0)
2825, 27eqtrd 2776 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)𝐶 = 0)
2928oveq2d 7451 . . 3 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶) = (Σ*𝑘𝐴𝐶 +𝑒 0))
30 iccssxr 13473 . . . . 5 (0[,]+∞) ⊆ ℝ*
3111ralrimiva 3145 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (0[,]+∞))
322esumcl 34024 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
334, 31, 32syl2anc 584 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
3430, 33sselid 3994 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ℝ*)
35 xaddrid 13286 . . . 4 *𝑘𝐴𝐶 ∈ ℝ* → (Σ*𝑘𝐴𝐶 +𝑒 0) = Σ*𝑘𝐴𝐶)
3634, 35syl 17 . . 3 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 0) = Σ*𝑘𝐴𝐶)
3729, 36eqtrd 2776 . 2 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶) = Σ*𝑘𝐴𝐶)
3818, 22, 373eqtr3d 2784 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  wral 3060  Vcvv 3479  cdif 3961  cun 3962  cin 3963  c0 4340  (class class class)co 7435  0cc0 11159  +∞cpnf 11296  *cxr 11298   +𝑒 cxad 13156  [,]cicc 13393  Σ*cesum 34021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237  ax-addf 11238  ax-mulf 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-of 7701  df-om 7892  df-1st 8019  df-2nd 8020  df-supp 8191  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-er 8750  df-map 8873  df-pm 8874  df-ixp 8943  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-fsupp 9406  df-fi 9455  df-sup 9486  df-inf 9487  df-oi 9554  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-ioo 13394  df-ioc 13395  df-ico 13396  df-icc 13397  df-fz 13551  df-fzo 13698  df-fl 13835  df-mod 13913  df-seq 14046  df-exp 14106  df-fac 14316  df-bc 14345  df-hash 14373  df-shft 15109  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-limsup 15510  df-clim 15527  df-rlim 15528  df-sum 15726  df-ef 16106  df-sin 16108  df-cos 16109  df-pi 16111  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-starv 17319  df-sca 17320  df-vsca 17321  df-ip 17322  df-tset 17323  df-ple 17324  df-ds 17326  df-unif 17327  df-hom 17328  df-cco 17329  df-rest 17475  df-topn 17476  df-0g 17494  df-gsum 17495  df-topgen 17496  df-pt 17497  df-prds 17500  df-ordt 17554  df-xrs 17555  df-qtop 17560  df-imas 17561  df-xps 17563  df-mre 17637  df-mrc 17638  df-acs 17640  df-ps 18630  df-tsr 18631  df-plusf 18671  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-mhm 18815  df-submnd 18816  df-grp 18973  df-minusg 18974  df-sbg 18975  df-mulg 19105  df-subg 19160  df-cntz 19354  df-cmn 19821  df-abl 19822  df-mgp 20159  df-rng 20177  df-ur 20206  df-ring 20259  df-cring 20260  df-subrng 20569  df-subrg 20593  df-abv 20833  df-lmod 20883  df-scaf 20884  df-sra 21196  df-rgmod 21197  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-fbas 21385  df-fg 21386  df-cnfld 21389  df-top 22922  df-topon 22939  df-topsp 22961  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-nei 23128  df-lp 23166  df-perf 23167  df-cn 23257  df-cnp 23258  df-haus 23345  df-tx 23592  df-hmeo 23785  df-fil 23876  df-fm 23968  df-flim 23969  df-flf 23970  df-tmd 24102  df-tgp 24103  df-tsms 24157  df-trg 24190  df-xms 24352  df-ms 24353  df-tms 24354  df-nm 24617  df-ngp 24618  df-nrg 24620  df-nlm 24621  df-ii 24925  df-cncf 24926  df-limc 25924  df-dv 25925  df-log 26621  df-esum 34022
This theorem is referenced by:  esumpad2  34050  carsggect  34313
  Copyright terms: Public domain W3C validator