![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpad | Structured version Visualization version GIF version |
Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.) |
Ref | Expression |
---|---|
esumpad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
esumpad.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumpad.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) |
Ref | Expression |
---|---|
esumpad | ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑘(𝐵 ∖ 𝐴) | |
4 | esumpad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | elex 3500 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | esumpad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | 7 | difexd 5338 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ V) |
9 | disjdif 4479 | . . . 4 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
11 | esumpad.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
12 | difssd 4148 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
13 | 12 | sselda 3996 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝑘 ∈ 𝐵) |
14 | esumpad.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) | |
15 | 0e0iccpnf 13502 | . . . . 5 ⊢ 0 ∈ (0[,]+∞) | |
16 | 14, 15 | eqeltrdi 2848 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
17 | 13, 16 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ (0[,]+∞)) |
18 | 1, 2, 3, 6, 8, 10, 11, 17 | esumsplit 34047 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶)) |
19 | undif2 4484 | . . . 4 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
20 | esumeq1 34028 | . . . 4 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) → Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) | |
21 | 19, 20 | ax-mp 5 | . . 3 ⊢ Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) |
23 | 13, 14 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
24 | 23 | ralrimiva 3145 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
25 | 1, 24 | esumeq2d 34031 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = Σ*𝑘 ∈ (𝐵 ∖ 𝐴)0) |
26 | 3 | esum0 34043 | . . . . . 6 ⊢ ((𝐵 ∖ 𝐴) ∈ V → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)0 = 0) |
27 | 8, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)0 = 0) |
28 | 25, 27 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
29 | 28 | oveq2d 7451 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶) = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 0)) |
30 | iccssxr 13473 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
31 | 11 | ralrimiva 3145 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) |
32 | 2 | esumcl 34024 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
33 | 4, 31, 32 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
34 | 30, 33 | sselid 3994 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ*) |
35 | xaddrid 13286 | . . . 4 ⊢ (Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ* → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 0) = Σ*𝑘 ∈ 𝐴𝐶) | |
36 | 34, 35 | syl 17 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 0) = Σ*𝑘 ∈ 𝐴𝐶) |
37 | 29, 36 | eqtrd 2776 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶) = Σ*𝑘 ∈ 𝐴𝐶) |
38 | 18, 22, 37 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ∖ cdif 3961 ∪ cun 3962 ∩ cin 3963 ∅c0 4340 (class class class)co 7435 0cc0 11159 +∞cpnf 11296 ℝ*cxr 11298 +𝑒 cxad 13156 [,]cicc 13393 Σ*cesum 34021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 ax-mulf 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-pm 8874 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-ioc 13395 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-fl 13835 df-mod 13913 df-seq 14046 df-exp 14106 df-fac 14316 df-bc 14345 df-hash 14373 df-shft 15109 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-limsup 15510 df-clim 15527 df-rlim 15528 df-sum 15726 df-ef 16106 df-sin 16108 df-cos 16109 df-pi 16111 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-ordt 17554 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-ps 18630 df-tsr 18631 df-plusf 18671 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18815 df-submnd 18816 df-grp 18973 df-minusg 18974 df-sbg 18975 df-mulg 19105 df-subg 19160 df-cntz 19354 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-cring 20260 df-subrng 20569 df-subrg 20593 df-abv 20833 df-lmod 20883 df-scaf 20884 df-sra 21196 df-rgmod 21197 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-lp 23166 df-perf 23167 df-cn 23257 df-cnp 23258 df-haus 23345 df-tx 23592 df-hmeo 23785 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-tmd 24102 df-tgp 24103 df-tsms 24157 df-trg 24190 df-xms 24352 df-ms 24353 df-tms 24354 df-nm 24617 df-ngp 24618 df-nrg 24620 df-nlm 24621 df-ii 24925 df-cncf 24926 df-limc 25924 df-dv 25925 df-log 26621 df-esum 34022 |
This theorem is referenced by: esumpad2 34050 carsggect 34313 |
Copyright terms: Public domain | W3C validator |