Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpad | Structured version Visualization version GIF version |
Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.) |
Ref | Expression |
---|---|
esumpad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
esumpad.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumpad.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) |
Ref | Expression |
---|---|
esumpad | ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑘(𝐵 ∖ 𝐴) | |
4 | esumpad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | elex 3451 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | esumpad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | 7 | difexd 5254 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ V) |
9 | disjdif 4406 | . . . 4 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
11 | esumpad.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
12 | difssd 4068 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
13 | 12 | sselda 3922 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝑘 ∈ 𝐵) |
14 | esumpad.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) | |
15 | 0e0iccpnf 13200 | . . . . 5 ⊢ 0 ∈ (0[,]+∞) | |
16 | 14, 15 | eqeltrdi 2848 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
17 | 13, 16 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ (0[,]+∞)) |
18 | 1, 2, 3, 6, 8, 10, 11, 17 | esumsplit 32030 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶)) |
19 | undif2 4411 | . . . 4 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
20 | esumeq1 32011 | . . . 4 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) → Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) | |
21 | 19, 20 | ax-mp 5 | . . 3 ⊢ Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) |
23 | 13, 14 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
24 | 23 | ralrimiva 3104 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
25 | 1, 24 | esumeq2d 32014 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = Σ*𝑘 ∈ (𝐵 ∖ 𝐴)0) |
26 | 3 | esum0 32026 | . . . . . 6 ⊢ ((𝐵 ∖ 𝐴) ∈ V → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)0 = 0) |
27 | 8, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)0 = 0) |
28 | 25, 27 | eqtrd 2779 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
29 | 28 | oveq2d 7300 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶) = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 0)) |
30 | iccssxr 13171 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
31 | 11 | ralrimiva 3104 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) |
32 | 2 | esumcl 32007 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
33 | 4, 31, 32 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
34 | 30, 33 | sselid 3920 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ*) |
35 | xaddid1 12984 | . . . 4 ⊢ (Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ* → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 0) = Σ*𝑘 ∈ 𝐴𝐶) | |
36 | 34, 35 | syl 17 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 0) = Σ*𝑘 ∈ 𝐴𝐶) |
37 | 29, 36 | eqtrd 2779 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵 ∖ 𝐴)𝐶) = Σ*𝑘 ∈ 𝐴𝐶) |
38 | 18, 22, 37 | 3eqtr3d 2787 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∀wral 3065 Vcvv 3433 ∖ cdif 3885 ∪ cun 3886 ∩ cin 3887 ∅c0 4257 (class class class)co 7284 0cc0 10880 +∞cpnf 11015 ℝ*cxr 11017 +𝑒 cxad 12855 [,]cicc 13091 Σ*cesum 32004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 ax-addf 10959 ax-mulf 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-map 8626 df-pm 8627 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-fi 9179 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-ioo 13092 df-ioc 13093 df-ico 13094 df-icc 13095 df-fz 13249 df-fzo 13392 df-fl 13521 df-mod 13599 df-seq 13731 df-exp 13792 df-fac 13997 df-bc 14026 df-hash 14054 df-shft 14787 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-limsup 15189 df-clim 15206 df-rlim 15207 df-sum 15407 df-ef 15786 df-sin 15788 df-cos 15789 df-pi 15791 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-starv 16986 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-hom 16995 df-cco 16996 df-rest 17142 df-topn 17143 df-0g 17161 df-gsum 17162 df-topgen 17163 df-pt 17164 df-prds 17167 df-ordt 17221 df-xrs 17222 df-qtop 17227 df-imas 17228 df-xps 17230 df-mre 17304 df-mrc 17305 df-acs 17307 df-ps 18293 df-tsr 18294 df-plusf 18334 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-mhm 18439 df-submnd 18440 df-grp 18589 df-minusg 18590 df-sbg 18591 df-mulg 18710 df-subg 18761 df-cntz 18932 df-cmn 19397 df-abl 19398 df-mgp 19730 df-ur 19747 df-ring 19794 df-cring 19795 df-subrg 20031 df-abv 20086 df-lmod 20134 df-scaf 20135 df-sra 20443 df-rgmod 20444 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-fbas 20603 df-fg 20604 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cld 22179 df-ntr 22180 df-cls 22181 df-nei 22258 df-lp 22296 df-perf 22297 df-cn 22387 df-cnp 22388 df-haus 22475 df-tx 22722 df-hmeo 22915 df-fil 23006 df-fm 23098 df-flim 23099 df-flf 23100 df-tmd 23232 df-tgp 23233 df-tsms 23287 df-trg 23320 df-xms 23482 df-ms 23483 df-tms 23484 df-nm 23747 df-ngp 23748 df-nrg 23750 df-nlm 23751 df-ii 24049 df-cncf 24050 df-limc 25039 df-dv 25040 df-log 25721 df-esum 32005 |
This theorem is referenced by: esumpad2 32033 carsggect 32294 |
Copyright terms: Public domain | W3C validator |