Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpad Structured version   Visualization version   GIF version

Theorem esumpad 34021
Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.)
Hypotheses
Ref Expression
esumpad.1 (𝜑𝐴𝑉)
esumpad.2 (𝜑𝐵𝑊)
esumpad.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumpad.4 ((𝜑𝑘𝐵) → 𝐶 = 0)
Assertion
Ref Expression
esumpad (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑊(𝑘)

Proof of Theorem esumpad
StepHypRef Expression
1 nfv 1913 . . 3 𝑘𝜑
2 nfcv 2908 . . 3 𝑘𝐴
3 nfcv 2908 . . 3 𝑘(𝐵𝐴)
4 esumpad.1 . . . 4 (𝜑𝐴𝑉)
5 elex 3509 . . . 4 (𝐴𝑉𝐴 ∈ V)
64, 5syl 17 . . 3 (𝜑𝐴 ∈ V)
7 esumpad.2 . . . 4 (𝜑𝐵𝑊)
87difexd 5349 . . 3 (𝜑 → (𝐵𝐴) ∈ V)
9 disjdif 4495 . . . 4 (𝐴 ∩ (𝐵𝐴)) = ∅
109a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
11 esumpad.3 . . 3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
12 difssd 4160 . . . . 5 (𝜑 → (𝐵𝐴) ⊆ 𝐵)
1312sselda 4008 . . . 4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝑘𝐵)
14 esumpad.4 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 = 0)
15 0e0iccpnf 13521 . . . . 5 0 ∈ (0[,]+∞)
1614, 15eqeltrdi 2852 . . . 4 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1713, 16syldan 590 . . 3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ (0[,]+∞))
181, 2, 3, 6, 8, 10, 11, 17esumsplit 34019 . 2 (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶))
19 undif2 4500 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
20 esumeq1 34000 . . . 4 ((𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵) → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2119, 20ax-mp 5 . . 3 Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶
2221a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ (𝐵𝐴))𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2313, 14syldan 590 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
2423ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
251, 24esumeq2d 34003 . . . . 5 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)𝐶 = Σ*𝑘 ∈ (𝐵𝐴)0)
263esum0 34015 . . . . . 6 ((𝐵𝐴) ∈ V → Σ*𝑘 ∈ (𝐵𝐴)0 = 0)
278, 26syl 17 . . . . 5 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)0 = 0)
2825, 27eqtrd 2780 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐵𝐴)𝐶 = 0)
2928oveq2d 7466 . . 3 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶) = (Σ*𝑘𝐴𝐶 +𝑒 0))
30 iccssxr 13492 . . . . 5 (0[,]+∞) ⊆ ℝ*
3111ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (0[,]+∞))
322esumcl 33996 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
334, 31, 32syl2anc 583 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
3430, 33sselid 4006 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ℝ*)
35 xaddrid 13305 . . . 4 *𝑘𝐴𝐶 ∈ ℝ* → (Σ*𝑘𝐴𝐶 +𝑒 0) = Σ*𝑘𝐴𝐶)
3634, 35syl 17 . . 3 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 0) = Σ*𝑘𝐴𝐶)
3729, 36eqtrd 2780 . 2 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘 ∈ (𝐵𝐴)𝐶) = Σ*𝑘𝐴𝐶)
3818, 22, 373eqtr3d 2788 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  c0 4352  (class class class)co 7450  0cc0 11186  +∞cpnf 11323  *cxr 11325   +𝑒 cxad 13175  [,]cicc 13412  Σ*cesum 33993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264  ax-addf 11265  ax-mulf 11266
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-pm 8889  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fsupp 9434  df-fi 9482  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-ioo 13413  df-ioc 13414  df-ico 13415  df-icc 13416  df-fz 13570  df-fzo 13714  df-fl 13845  df-mod 13923  df-seq 14055  df-exp 14115  df-fac 14325  df-bc 14354  df-hash 14382  df-shft 15118  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-limsup 15519  df-clim 15536  df-rlim 15537  df-sum 15737  df-ef 16117  df-sin 16119  df-cos 16120  df-pi 16122  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-hom 17337  df-cco 17338  df-rest 17484  df-topn 17485  df-0g 17503  df-gsum 17504  df-topgen 17505  df-pt 17506  df-prds 17509  df-ordt 17563  df-xrs 17564  df-qtop 17569  df-imas 17570  df-xps 17572  df-mre 17646  df-mrc 17647  df-acs 17649  df-ps 18638  df-tsr 18639  df-plusf 18679  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-mhm 18820  df-submnd 18821  df-grp 18978  df-minusg 18979  df-sbg 18980  df-mulg 19110  df-subg 19165  df-cntz 19359  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-cring 20265  df-subrng 20574  df-subrg 20599  df-abv 20834  df-lmod 20884  df-scaf 20885  df-sra 21197  df-rgmod 21198  df-psmet 21381  df-xmet 21382  df-met 21383  df-bl 21384  df-mopn 21385  df-fbas 21386  df-fg 21387  df-cnfld 21390  df-top 22923  df-topon 22940  df-topsp 22962  df-bases 22976  df-cld 23050  df-ntr 23051  df-cls 23052  df-nei 23129  df-lp 23167  df-perf 23168  df-cn 23258  df-cnp 23259  df-haus 23346  df-tx 23593  df-hmeo 23786  df-fil 23877  df-fm 23969  df-flim 23970  df-flf 23971  df-tmd 24103  df-tgp 24104  df-tsms 24158  df-trg 24191  df-xms 24353  df-ms 24354  df-tms 24355  df-nm 24618  df-ngp 24619  df-nrg 24621  df-nlm 24622  df-ii 24924  df-cncf 24925  df-limc 25923  df-dv 25924  df-log 26618  df-esum 33994
This theorem is referenced by:  esumpad2  34022  carsggect  34285
  Copyright terms: Public domain W3C validator