Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlef Structured version   Visualization version   GIF version

Theorem esumlef 30465
Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Hypotheses
Ref Expression
esumaddf.0 𝑘𝜑
esumaddf.a 𝑘𝐴
esumaddf.1 (𝜑𝐴𝑉)
esumaddf.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumaddf.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumlef.3 ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
esumlef (𝜑 → Σ*𝑘𝐴𝐵 ≤ Σ*𝑘𝐴𝐶)
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumlef
StepHypRef Expression
1 iccssxr 12462 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 esumaddf.1 . . . . . 6 (𝜑𝐴𝑉)
3 esumaddf.0 . . . . . . 7 𝑘𝜑
4 esumaddf.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
54ex 397 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
63, 5ralrimi 3106 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
7 esumaddf.a . . . . . . 7 𝑘𝐴
87esumcl 30433 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
92, 6, 8syl2anc 567 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
101, 9sseldi 3751 . . . 4 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
11 esumaddf.3 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
121, 11sseldi 3751 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
131, 4sseldi 3751 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
1413xnegcld 12336 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -𝑒𝐵 ∈ ℝ*)
1512, 14xaddcld 12337 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*)
16 esumlef.3 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵𝐶)
17 xsubge0 12297 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵𝐶))
1812, 13, 17syl2anc 567 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵𝐶))
1916, 18mpbird 247 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶 +𝑒 -𝑒𝐵))
20 pnfge 12170 . . . . . . . . . 10 ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)
2115, 20syl 17 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)
22 0xr 10289 . . . . . . . . . 10 0 ∈ ℝ*
23 pnfxr 10295 . . . . . . . . . 10 +∞ ∈ ℝ*
24 elicc1 12425 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)))
2522, 23, 24mp2an 666 . . . . . . . . 9 ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞))
2615, 19, 21, 25syl3anbrc 1428 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
2726ex 397 . . . . . . 7 (𝜑 → (𝑘𝐴 → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)))
283, 27ralrimi 3106 . . . . . 6 (𝜑 → ∀𝑘𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
297esumcl 30433 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) → Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
302, 28, 29syl2anc 567 . . . . 5 (𝜑 → Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
311, 30sseldi 3751 . . . 4 (𝜑 → Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*)
3222a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
3323a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
34 elicc4 12446 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)))
3532, 33, 31, 34syl3anc 1476 . . . . . 6 (𝜑 → (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)))
3630, 35mpbid 222 . . . . 5 (𝜑 → (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))
3736simpld 478 . . . 4 (𝜑 → 0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵))
38 xraddge02 29862 . . . . 5 ((Σ*𝑘𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵))))
3938imp 393 . . . 4 (((Σ*𝑘𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) ∧ 0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)) → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)))
4010, 31, 37, 39syl21anc 1475 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)))
41 xaddcom 12277 . . . 4 ((Σ*𝑘𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
4210, 31, 41syl2anc 567 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
4340, 42breqtrd 4813 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
443, 7, 2, 26, 4esumaddf 30464 . . 3 (𝜑 → Σ*𝑘𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
45 xrge0npcan 30035 . . . . . . 7 ((𝐶 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐶) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)
4611, 4, 16, 45syl3anc 1476 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)
4746ex 397 . . . . 5 (𝜑 → (𝑘𝐴 → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶))
483, 47ralrimi 3106 . . . 4 (𝜑 → ∀𝑘𝐴 ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)
493, 48esumeq2d 30440 . . 3 (𝜑 → Σ*𝑘𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = Σ*𝑘𝐴𝐶)
5044, 49eqtr3d 2807 . 2 (𝜑 → (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴𝐶)
5143, 50breqtrd 4813 1 (𝜑 → Σ*𝑘𝐴𝐵 ≤ Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wnf 1856  wcel 2145  wnfc 2900  wral 3061   class class class wbr 4787  (class class class)co 6794  0cc0 10139  +∞cpnf 10274  *cxr 10276  cle 10278  -𝑒cxne 12149   +𝑒 cxad 12150  [,]cicc 12384  Σ*cesum 30430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217  ax-addf 10218  ax-mulf 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-of 7045  df-om 7214  df-1st 7316  df-2nd 7317  df-supp 7448  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-2o 7715  df-oadd 7718  df-er 7897  df-map 8012  df-pm 8013  df-ixp 8064  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8966  df-cda 9193  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-5 11285  df-6 11286  df-7 11287  df-8 11288  df-9 11289  df-n0 11496  df-z 11581  df-dec 11697  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-ioo 12385  df-ioc 12386  df-ico 12387  df-icc 12388  df-fz 12535  df-fzo 12675  df-fl 12802  df-mod 12878  df-seq 13010  df-exp 13069  df-fac 13266  df-bc 13295  df-hash 13323  df-shft 14016  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-limsup 14411  df-clim 14428  df-rlim 14429  df-sum 14626  df-ef 15005  df-sin 15007  df-cos 15008  df-pi 15010  df-struct 16067  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-mulr 16164  df-starv 16165  df-sca 16166  df-vsca 16167  df-ip 16168  df-tset 16169  df-ple 16170  df-ds 16173  df-unif 16174  df-hom 16175  df-cco 16176  df-rest 16292  df-topn 16293  df-0g 16311  df-gsum 16312  df-topgen 16313  df-pt 16314  df-prds 16317  df-ordt 16370  df-xrs 16371  df-qtop 16376  df-imas 16377  df-xps 16379  df-mre 16455  df-mrc 16456  df-acs 16458  df-ps 17409  df-tsr 17410  df-plusf 17450  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-mhm 17544  df-submnd 17545  df-grp 17634  df-minusg 17635  df-sbg 17636  df-mulg 17750  df-subg 17800  df-cntz 17958  df-cmn 18403  df-abl 18404  df-mgp 18699  df-ur 18711  df-ring 18758  df-cring 18759  df-subrg 18989  df-abv 19028  df-lmod 19076  df-scaf 19077  df-sra 19388  df-rgmod 19389  df-psmet 19954  df-xmet 19955  df-met 19956  df-bl 19957  df-mopn 19958  df-fbas 19959  df-fg 19960  df-cnfld 19963  df-top 20920  df-topon 20937  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-tmd 22097  df-tgp 22098  df-tsms 22151  df-trg 22184  df-xms 22346  df-ms 22347  df-tms 22348  df-nm 22608  df-ngp 22609  df-nrg 22611  df-nlm 22612  df-ii 22901  df-cncf 22902  df-limc 23851  df-dv 23852  df-log 24525  df-esum 30431
This theorem is referenced by:  esumpinfval  30476  esumpinfsum  30480  esum2d  30496  omssubadd  30703
  Copyright terms: Public domain W3C validator