![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumlef | Structured version Visualization version GIF version |
Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
Ref | Expression |
---|---|
esumaddf.0 | ⊢ Ⅎ𝑘𝜑 |
esumaddf.a | ⊢ Ⅎ𝑘𝐴 |
esumaddf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumaddf.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumaddf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumlef.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
esumlef | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13406 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumaddf.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumaddf.0 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
4 | esumaddf.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | 4 | ex 413 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
6 | 3, 5 | ralrimi 3254 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
7 | esumaddf.a | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
8 | 7 | esumcl 33023 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | 2, 6, 8 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
10 | 1, 9 | sselid 3980 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
11 | esumaddf.3 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
12 | 1, 11 | sselid 3980 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
13 | 1, 4 | sselid 3980 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
14 | 13 | xnegcld 13278 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -𝑒𝐵 ∈ ℝ*) |
15 | 12, 14 | xaddcld 13279 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) |
16 | esumlef.3 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
17 | xsubge0 13239 | . . . . . . . . . . 11 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐶)) | |
18 | 12, 13, 17 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐶)) |
19 | 16, 18 | mpbird 256 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ (𝐶 +𝑒 -𝑒𝐵)) |
20 | pnfge 13109 | . . . . . . . . . 10 ⊢ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞) | |
21 | 15, 20 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞) |
22 | 0xr 11260 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ* | |
23 | pnfxr 11267 | . . . . . . . . . 10 ⊢ +∞ ∈ ℝ* | |
24 | elicc1 13367 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) | |
25 | 22, 23, 24 | mp2an 690 | . . . . . . . . 9 ⊢ ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)) |
26 | 15, 19, 21, 25 | syl3anbrc 1343 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
27 | 26 | ex 413 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))) |
28 | 3, 27 | ralrimi 3254 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
29 | 7 | esumcl 33023 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
30 | 2, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
31 | 1, 30 | sselid 3980 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) |
32 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ*) |
33 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
34 | elicc4 13390 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) | |
35 | 32, 33, 31, 34 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) |
36 | 30, 35 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)) |
37 | 36 | simpld 495 | . . . 4 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) |
38 | xraddge02 31964 | . . . . 5 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)))) | |
39 | 38 | imp 407 | . . . 4 ⊢ (((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) ∧ 0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵))) |
40 | 10, 31, 37, 39 | syl21anc 836 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵))) |
41 | xaddcom 13218 | . . . 4 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) | |
42 | 10, 31, 41 | syl2anc 584 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
43 | 40, 42 | breqtrd 5174 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
44 | 3, 7, 2, 26, 4 | esumaddf 33054 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
45 | xrge0npcan 32190 | . . . . . . 7 ⊢ ((𝐶 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐶) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) | |
46 | 11, 4, 16, 45 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) |
47 | 46 | ex 413 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)) |
48 | 3, 47 | ralrimi 3254 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) |
49 | 3, 48 | esumeq2d 33030 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = Σ*𝑘 ∈ 𝐴𝐶) |
50 | 44, 49 | eqtr3d 2774 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴𝐶) |
51 | 43, 50 | breqtrd 5174 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ∀wral 3061 class class class wbr 5148 (class class class)co 7408 0cc0 11109 +∞cpnf 11244 ℝ*cxr 11246 ≤ cle 11248 -𝑒cxne 13088 +𝑒 cxad 13089 [,]cicc 13326 Σ*cesum 33020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-shft 15013 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 df-ef 16010 df-sin 16012 df-cos 16013 df-pi 16015 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-ordt 17446 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-ps 18518 df-tsr 18519 df-plusf 18559 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-subrg 20316 df-abv 20424 df-lmod 20472 df-scaf 20473 df-sra 20784 df-rgmod 20785 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-lp 22639 df-perf 22640 df-cn 22730 df-cnp 22731 df-haus 22818 df-tx 23065 df-hmeo 23258 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-tmd 23575 df-tgp 23576 df-tsms 23630 df-trg 23663 df-xms 23825 df-ms 23826 df-tms 23827 df-nm 24090 df-ngp 24091 df-nrg 24093 df-nlm 24094 df-ii 24392 df-cncf 24393 df-limc 25382 df-dv 25383 df-log 26064 df-esum 33021 |
This theorem is referenced by: esumpinfval 33066 esumpinfsum 33070 esum2d 33086 omssubadd 33294 |
Copyright terms: Public domain | W3C validator |