Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlef Structured version   Visualization version   GIF version

Theorem esumlef 34059
Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Hypotheses
Ref Expression
esumaddf.0 𝑘𝜑
esumaddf.a 𝑘𝐴
esumaddf.1 (𝜑𝐴𝑉)
esumaddf.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumaddf.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumlef.3 ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
esumlef (𝜑 → Σ*𝑘𝐴𝐵 ≤ Σ*𝑘𝐴𝐶)
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem esumlef
StepHypRef Expression
1 iccssxr 13398 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 esumaddf.1 . . . . . 6 (𝜑𝐴𝑉)
3 esumaddf.0 . . . . . . 7 𝑘𝜑
4 esumaddf.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
54ex 412 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
63, 5ralrimi 3236 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
7 esumaddf.a . . . . . . 7 𝑘𝐴
87esumcl 34027 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
92, 6, 8syl2anc 584 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
101, 9sselid 3947 . . . 4 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
11 esumaddf.3 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
121, 11sselid 3947 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
131, 4sselid 3947 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
1413xnegcld 13267 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -𝑒𝐵 ∈ ℝ*)
1512, 14xaddcld 13268 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*)
16 esumlef.3 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵𝐶)
17 xsubge0 13228 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵𝐶))
1812, 13, 17syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵𝐶))
1916, 18mpbird 257 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶 +𝑒 -𝑒𝐵))
20 pnfge 13097 . . . . . . . . . 10 ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)
2115, 20syl 17 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)
22 0xr 11228 . . . . . . . . . 10 0 ∈ ℝ*
23 pnfxr 11235 . . . . . . . . . 10 +∞ ∈ ℝ*
24 elicc1 13357 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)))
2522, 23, 24mp2an 692 . . . . . . . . 9 ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞))
2615, 19, 21, 25syl3anbrc 1344 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
2726ex 412 . . . . . . 7 (𝜑 → (𝑘𝐴 → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)))
283, 27ralrimi 3236 . . . . . 6 (𝜑 → ∀𝑘𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
297esumcl 34027 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) → Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
302, 28, 29syl2anc 584 . . . . 5 (𝜑 → Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
311, 30sselid 3947 . . . 4 (𝜑 → Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*)
3222a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
3323a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
34 elicc4 13381 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)))
3532, 33, 31, 34syl3anc 1373 . . . . . 6 (𝜑 → (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)))
3630, 35mpbid 232 . . . . 5 (𝜑 → (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))
3736simpld 494 . . . 4 (𝜑 → 0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵))
38 xraddge02 32687 . . . . 5 ((Σ*𝑘𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵))))
3938imp 406 . . . 4 (((Σ*𝑘𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) ∧ 0 ≤ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)) → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)))
4010, 31, 37, 39syl21anc 837 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)))
41 xaddcom 13207 . . . 4 ((Σ*𝑘𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
4210, 31, 41syl2anc 584 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 +𝑒 Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
4340, 42breqtrd 5136 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ≤ (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
443, 7, 2, 26, 4esumaddf 34058 . . 3 (𝜑 → Σ*𝑘𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵))
45 xrge0npcan 32968 . . . . . . 7 ((𝐶 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐶) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)
4611, 4, 16, 45syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)
4746ex 412 . . . . 5 (𝜑 → (𝑘𝐴 → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶))
483, 47ralrimi 3236 . . . 4 (𝜑 → ∀𝑘𝐴 ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶)
493, 48esumeq2d 34034 . . 3 (𝜑 → Σ*𝑘𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = Σ*𝑘𝐴𝐶)
5044, 49eqtr3d 2767 . 2 (𝜑 → (Σ*𝑘𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴𝐶)
5143, 50breqtrd 5136 1 (𝜑 → Σ*𝑘𝐴𝐵 ≤ Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wral 3045   class class class wbr 5110  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216  -𝑒cxne 13076   +𝑒 cxad 13077  [,]cicc 13316  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025
This theorem is referenced by:  esumpinfval  34070  esumpinfsum  34074  esum2d  34090  omssubadd  34298
  Copyright terms: Public domain W3C validator