Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eupre Structured version   Visualization version   GIF version

Theorem eupre 38516
Description: Unique predecessor exists on the successor class. (Contributed by Peter Mazsa, 27-Jan-2026.)
Assertion
Ref Expression
eupre (𝑁𝑉 → (𝑁 ∈ Suc ↔ ∃!𝑚 𝑚 SucMap 𝑁))
Distinct variable groups:   𝑚,𝑁   𝑚,𝑉

Proof of Theorem eupre
StepHypRef Expression
1 df-succl 38492 . . 3 Suc = ran SucMap
21eleq2i 2823 . 2 (𝑁 ∈ Suc ↔ 𝑁 ∈ ran SucMap )
3 eupre2 38515 . 2 (𝑁𝑉 → (𝑁 ∈ ran SucMap ↔ ∃!𝑚 𝑚 SucMap 𝑁))
42, 3bitrid 283 1 (𝑁𝑉 → (𝑁 ∈ Suc ↔ ∃!𝑚 𝑚 SucMap 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  ∃!weu 2563   class class class wbr 5089  ran crn 5615   SucMap csucmap 38227   Suc csuccl 38228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-cnv 5622  df-dm 5624  df-rn 5625  df-suc 6312  df-sucmap 38485  df-succl 38492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator