MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0rn0 Structured version   Visualization version   GIF version

Theorem f0rn0 6728
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Distinct variable groups:   𝑦,𝐸   𝑦,𝑌
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 6678 . . 3 (𝐸:𝑋𝑌 → dom 𝐸 = 𝑋)
2 frn 6676 . . . . . . . . 9 (𝐸:𝑋𝑌 → ran 𝐸𝑌)
3 ralnex 3076 . . . . . . . . . 10 (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 ↔ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)
4 disj 4408 . . . . . . . . . . 11 ((𝑌 ∩ ran 𝐸) = ∅ ↔ ∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸)
5 df-ss 3928 . . . . . . . . . . . 12 (ran 𝐸𝑌 ↔ (ran 𝐸𝑌) = ran 𝐸)
6 incom 4162 . . . . . . . . . . . . . 14 (ran 𝐸𝑌) = (𝑌 ∩ ran 𝐸)
76eqeq1i 2742 . . . . . . . . . . . . 13 ((ran 𝐸𝑌) = ran 𝐸 ↔ (𝑌 ∩ ran 𝐸) = ran 𝐸)
8 eqtr2 2761 . . . . . . . . . . . . . 14 (((𝑌 ∩ ran 𝐸) = ran 𝐸 ∧ (𝑌 ∩ ran 𝐸) = ∅) → ran 𝐸 = ∅)
98ex 414 . . . . . . . . . . . . 13 ((𝑌 ∩ ran 𝐸) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
107, 9sylbi 216 . . . . . . . . . . . 12 ((ran 𝐸𝑌) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
115, 10sylbi 216 . . . . . . . . . . 11 (ran 𝐸𝑌 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
124, 11biimtrrid 242 . . . . . . . . . 10 (ran 𝐸𝑌 → (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
133, 12biimtrrid 242 . . . . . . . . 9 (ran 𝐸𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
142, 13syl 17 . . . . . . . 8 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
1514imp 408 . . . . . . 7 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → ran 𝐸 = ∅)
1615adantl 483 . . . . . 6 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → ran 𝐸 = ∅)
17 dm0rn0 5881 . . . . . 6 (dom 𝐸 = ∅ ↔ ran 𝐸 = ∅)
1816, 17sylibr 233 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → dom 𝐸 = ∅)
19 eqeq1 2741 . . . . . . 7 (𝑋 = dom 𝐸 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2019eqcoms 2745 . . . . . 6 (dom 𝐸 = 𝑋 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2120adantr 482 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2218, 21mpbird 257 . . . 4 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → 𝑋 = ∅)
2322exp32 422 . . 3 (dom 𝐸 = 𝑋 → (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅)))
241, 23mpcom 38 . 2 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅))
2524imp 408 1 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  wrex 3074  cin 3910  wss 3911  c0 4283  dom cdm 5634  ran crn 5635  wf 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-cnv 5642  df-dm 5644  df-rn 5645  df-fn 6500  df-f 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator