MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst Structured version   Visualization version   GIF version

Theorem fconst 6714
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1 𝐵 ∈ V
Assertion
Ref Expression
fconst (𝐴 × {𝐵}):𝐴⟶{𝐵}

Proof of Theorem fconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3 𝐵 ∈ V
2 fconstmpt 5685 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fnmpti 6629 . 2 (𝐴 × {𝐵}) Fn 𝐴
4 rnxpss 6125 . 2 ran (𝐴 × {𝐵}) ⊆ {𝐵}
5 df-f 6490 . 2 ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵}))
63, 4, 5mpbir2an 711 1 (𝐴 × {𝐵}):𝐴⟶{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  wss 3905  {csn 4579   × cxp 5621  ran crn 5624   Fn wfn 6481  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  fconstg  6715  fodomr  9052  fodomfir  9237  ofsubeq0  12143  ser0f  13980  hashgval  14258  hashinf  14260  hashfxnn0  14262  prodf1f  15817  pwssplit1  20981  psrbag0  21985  xkofvcn  23587  rrx0el  25314  ibl0  25704  dvcmul  25863  dvcmulf  25864  dvexp  25873  elqaalem3  26245  basellem7  27013  basellem9  27015  noetasuplem4  27664  axlowdimlem8  28912  axlowdimlem9  28913  axlowdimlem10  28914  axlowdimlem11  28915  axlowdimlem12  28916  0oo  30751  occllem  31265  ho01i  31790  nlelchi  32023  hmopidmchi  32113  elrgspnlem1  33192  eulerpartlemt  34338  plymul02  34513  breprexpnat  34601  fullfunfnv  35919  fullfunfv  35920  poimirlem16  37615  poimirlem19  37618  poimirlem23  37622  poimirlem24  37623  poimirlem25  37624  poimirlem28  37627  poimirlem29  37628  poimirlem30  37629  poimirlem31  37630  poimirlem32  37631  ftc1anclem5  37676  lfl0f  39047  diophrw  42732  pwssplit4  43062  ofsubid  44297  dvsconst  44303  dvsid  44304  binomcxplemnn0  44322  binomcxplemnotnn0  44329  functermc  49481  aacllem  49774
  Copyright terms: Public domain W3C validator