![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5736 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6690 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6168 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6544 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 709 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 {csn 4627 × cxp 5673 ran crn 5676 Fn wfn 6535 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: fconstg 6775 fodomr 9124 ofsubeq0 12205 ser0f 14017 hashgval 14289 hashinf 14291 hashfxnn0 14293 prodf1f 15834 pwssplit1 20662 psrbag0 21614 xkofvcn 23179 rrx0el 24906 ibl0 25295 dvcmul 25452 dvcmulf 25453 dvexp 25461 elqaalem3 25825 basellem7 26580 basellem9 26582 noetasuplem4 27228 axlowdimlem8 28196 axlowdimlem9 28197 axlowdimlem10 28198 axlowdimlem11 28199 axlowdimlem12 28200 0oo 30029 occllem 30543 ho01i 31068 nlelchi 31301 hmopidmchi 31391 eulerpartlemt 33358 plymul02 33545 breprexpnat 33634 fullfunfnv 34906 fullfunfv 34907 poimirlem16 36492 poimirlem19 36495 poimirlem23 36499 poimirlem24 36500 poimirlem25 36501 poimirlem28 36504 poimirlem29 36505 poimirlem30 36506 poimirlem31 36507 poimirlem32 36508 ftc1anclem5 36553 lfl0f 37927 diophrw 41482 pwssplit4 41816 ofsubid 43068 dvsconst 43074 dvsid 43075 binomcxplemnn0 43093 binomcxplemnotnn0 43100 aacllem 47801 |
Copyright terms: Public domain | W3C validator |