| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5681 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6630 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6125 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6491 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {csn 4575 × cxp 5617 ran crn 5620 Fn wfn 6482 ⟶wf 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6489 df-fn 6490 df-f 6491 |
| This theorem is referenced by: fconstg 6716 fodomr 9047 fodomfir 9218 ofsubeq0 12128 ser0f 13968 hashgval 14246 hashinf 14248 hashfxnn0 14250 prodf1f 15805 pwssplit1 20999 psrbag0 22003 xkofvcn 23605 rrx0el 25331 ibl0 25721 dvcmul 25880 dvcmulf 25881 dvexp 25890 elqaalem3 26262 basellem7 27030 basellem9 27032 noetasuplem4 27681 axlowdimlem8 28934 axlowdimlem9 28935 axlowdimlem10 28936 axlowdimlem11 28937 axlowdimlem12 28938 0oo 30776 occllem 31290 ho01i 31815 nlelchi 32048 hmopidmchi 32138 elrgspnlem1 33216 gsumind 33317 eulerpartlemt 34391 plymul02 34566 breprexpnat 34654 fullfunfnv 35997 fullfunfv 35998 poimirlem16 37682 poimirlem19 37685 poimirlem23 37689 poimirlem24 37690 poimirlem25 37691 poimirlem28 37694 poimirlem29 37695 poimirlem30 37696 poimirlem31 37697 poimirlem32 37698 ftc1anclem5 37743 lfl0f 39174 diophrw 42857 pwssplit4 43187 ofsubid 44422 dvsconst 44428 dvsid 44429 binomcxplemnn0 44447 binomcxplemnotnn0 44454 functermc 49614 aacllem 49907 |
| Copyright terms: Public domain | W3C validator |