MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst Structured version   Visualization version   GIF version

Theorem fconst 6777
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1 𝐵 ∈ V
Assertion
Ref Expression
fconst (𝐴 × {𝐵}):𝐴⟶{𝐵}

Proof of Theorem fconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3 𝐵 ∈ V
2 fconstmpt 5738 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fnmpti 6693 . 2 (𝐴 × {𝐵}) Fn 𝐴
4 rnxpss 6171 . 2 ran (𝐴 × {𝐵}) ⊆ {𝐵}
5 df-f 6547 . 2 ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵}))
63, 4, 5mpbir2an 709 1 (𝐴 × {𝐵}):𝐴⟶{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3474  wss 3948  {csn 4628   × cxp 5674  ran crn 5677   Fn wfn 6538  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  fconstg  6778  fodomr  9130  ofsubeq0  12213  ser0f  14025  hashgval  14297  hashinf  14299  hashfxnn0  14301  prodf1f  15842  pwssplit1  20814  psrbag0  21842  xkofvcn  23408  rrx0el  25139  ibl0  25528  dvcmul  25685  dvcmulf  25686  dvexp  25694  elqaalem3  26058  basellem7  26815  basellem9  26817  noetasuplem4  27463  axlowdimlem8  28462  axlowdimlem9  28463  axlowdimlem10  28464  axlowdimlem11  28465  axlowdimlem12  28466  0oo  30297  occllem  30811  ho01i  31336  nlelchi  31569  hmopidmchi  31659  eulerpartlemt  33656  plymul02  33843  breprexpnat  33932  fullfunfnv  35210  fullfunfv  35211  poimirlem16  36807  poimirlem19  36810  poimirlem23  36814  poimirlem24  36815  poimirlem25  36816  poimirlem28  36819  poimirlem29  36820  poimirlem30  36821  poimirlem31  36822  poimirlem32  36823  ftc1anclem5  36868  lfl0f  38242  diophrw  41799  pwssplit4  42133  ofsubid  43385  dvsconst  43391  dvsid  43392  binomcxplemnn0  43410  binomcxplemnotnn0  43417  aacllem  47936
  Copyright terms: Public domain W3C validator