![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5762 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6723 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6203 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6577 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 710 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 × cxp 5698 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fconstg 6808 fodomr 9194 fodomfir 9396 ofsubeq0 12290 ser0f 14106 hashgval 14382 hashinf 14384 hashfxnn0 14386 prodf1f 15940 pwssplit1 21081 psrbag0 22109 xkofvcn 23713 rrx0el 25451 ibl0 25842 dvcmul 26001 dvcmulf 26002 dvexp 26011 elqaalem3 26381 basellem7 27148 basellem9 27150 noetasuplem4 27799 axlowdimlem8 28982 axlowdimlem9 28983 axlowdimlem10 28984 axlowdimlem11 28985 axlowdimlem12 28986 0oo 30821 occllem 31335 ho01i 31860 nlelchi 32093 hmopidmchi 32183 eulerpartlemt 34336 plymul02 34523 breprexpnat 34611 fullfunfnv 35910 fullfunfv 35911 poimirlem16 37596 poimirlem19 37599 poimirlem23 37603 poimirlem24 37604 poimirlem25 37605 poimirlem28 37608 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 poimirlem32 37612 ftc1anclem5 37657 lfl0f 39025 diophrw 42715 pwssplit4 43046 ofsubid 44293 dvsconst 44299 dvsid 44300 binomcxplemnn0 44318 binomcxplemnotnn0 44325 aacllem 48895 |
Copyright terms: Public domain | W3C validator |