| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5676 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6620 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6116 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6481 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 Vcvv 3434 ⊆ wss 3900 {csn 4574 × cxp 5612 ran crn 5615 Fn wfn 6472 ⟶wf 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6479 df-fn 6480 df-f 6481 |
| This theorem is referenced by: fconstg 6706 fodomr 9036 fodomfir 9207 ofsubeq0 12114 ser0f 13954 hashgval 14232 hashinf 14234 hashfxnn0 14236 prodf1f 15791 pwssplit1 20986 psrbag0 21990 xkofvcn 23592 rrx0el 25318 ibl0 25708 dvcmul 25867 dvcmulf 25868 dvexp 25877 elqaalem3 26249 basellem7 27017 basellem9 27019 noetasuplem4 27668 axlowdimlem8 28920 axlowdimlem9 28921 axlowdimlem10 28922 axlowdimlem11 28923 axlowdimlem12 28924 0oo 30759 occllem 31273 ho01i 31798 nlelchi 32031 hmopidmchi 32121 elrgspnlem1 33199 gsumind 33300 eulerpartlemt 34374 plymul02 34549 breprexpnat 34637 fullfunfnv 35959 fullfunfv 35960 poimirlem16 37655 poimirlem19 37658 poimirlem23 37662 poimirlem24 37663 poimirlem25 37664 poimirlem28 37667 poimirlem29 37668 poimirlem30 37669 poimirlem31 37670 poimirlem32 37671 ftc1anclem5 37716 lfl0f 39087 diophrw 42771 pwssplit4 43101 ofsubid 44336 dvsconst 44342 dvsid 44343 binomcxplemnn0 44361 binomcxplemnotnn0 44368 functermc 49519 aacllem 49812 |
| Copyright terms: Public domain | W3C validator |