Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5583 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6474 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6001 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6339 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 710 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 ⊆ wss 3858 {csn 4522 × cxp 5522 ran crn 5525 Fn wfn 6330 ⟶wf 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-fun 6337 df-fn 6338 df-f 6339 |
This theorem is referenced by: fconstg 6551 fodomr 8690 ofsubeq0 11671 ser0f 13473 hashgval 13743 hashinf 13745 hashfxnn0 13747 prodf1f 15296 pwssplit1 19899 psrbag0 20823 xkofvcn 22384 rrx0el 24098 ibl0 24486 dvcmul 24643 dvcmulf 24644 dvexp 24652 elqaalem3 25016 basellem7 25771 basellem9 25773 axlowdimlem8 26842 axlowdimlem9 26843 axlowdimlem10 26844 axlowdimlem11 26845 axlowdimlem12 26846 0oo 28671 occllem 29185 ho01i 29710 nlelchi 29943 hmopidmchi 30033 eulerpartlemt 31857 plymul02 32044 breprexpnat 32133 noetasuplem4 33524 fullfunfnv 33819 fullfunfv 33820 poimirlem16 35375 poimirlem19 35378 poimirlem23 35382 poimirlem24 35383 poimirlem25 35384 poimirlem28 35387 poimirlem29 35388 poimirlem30 35389 poimirlem31 35390 poimirlem32 35391 ftc1anclem5 35436 lfl0f 36667 diophrw 40095 pwssplit4 40428 ofsubid 41423 dvsconst 41429 dvsid 41430 binomcxplemnn0 41448 binomcxplemnotnn0 41455 aacllem 45742 |
Copyright terms: Public domain | W3C validator |