Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5648 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6572 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6072 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6434 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 707 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 {csn 4566 × cxp 5586 ran crn 5589 Fn wfn 6425 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: fconstg 6657 fodomr 8880 ofsubeq0 11953 ser0f 13757 hashgval 14028 hashinf 14030 hashfxnn0 14032 prodf1f 15585 pwssplit1 20302 psrbag0 21251 xkofvcn 22816 rrx0el 24543 ibl0 24932 dvcmul 25089 dvcmulf 25090 dvexp 25098 elqaalem3 25462 basellem7 26217 basellem9 26219 axlowdimlem8 27298 axlowdimlem9 27299 axlowdimlem10 27300 axlowdimlem11 27301 axlowdimlem12 27302 0oo 29130 occllem 29644 ho01i 30169 nlelchi 30402 hmopidmchi 30492 eulerpartlemt 32317 plymul02 32504 breprexpnat 32593 noetasuplem4 33918 fullfunfnv 34227 fullfunfv 34228 poimirlem16 35772 poimirlem19 35775 poimirlem23 35779 poimirlem24 35780 poimirlem25 35781 poimirlem28 35784 poimirlem29 35785 poimirlem30 35786 poimirlem31 35787 poimirlem32 35788 ftc1anclem5 35833 lfl0f 37062 diophrw 40561 pwssplit4 40894 ofsubid 41895 dvsconst 41901 dvsid 41902 binomcxplemnn0 41920 binomcxplemnotnn0 41927 aacllem 46457 |
Copyright terms: Public domain | W3C validator |