MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst Structured version   Visualization version   GIF version

Theorem fconst 6705
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1 𝐵 ∈ V
Assertion
Ref Expression
fconst (𝐴 × {𝐵}):𝐴⟶{𝐵}

Proof of Theorem fconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3 𝐵 ∈ V
2 fconstmpt 5676 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fnmpti 6620 . 2 (𝐴 × {𝐵}) Fn 𝐴
4 rnxpss 6116 . 2 ran (𝐴 × {𝐵}) ⊆ {𝐵}
5 df-f 6481 . 2 ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵}))
63, 4, 5mpbir2an 711 1 (𝐴 × {𝐵}):𝐴⟶{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3434  wss 3900  {csn 4574   × cxp 5612  ran crn 5615   Fn wfn 6472  wf 6473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6479  df-fn 6480  df-f 6481
This theorem is referenced by:  fconstg  6706  fodomr  9036  fodomfir  9207  ofsubeq0  12114  ser0f  13954  hashgval  14232  hashinf  14234  hashfxnn0  14236  prodf1f  15791  pwssplit1  20986  psrbag0  21990  xkofvcn  23592  rrx0el  25318  ibl0  25708  dvcmul  25867  dvcmulf  25868  dvexp  25877  elqaalem3  26249  basellem7  27017  basellem9  27019  noetasuplem4  27668  axlowdimlem8  28920  axlowdimlem9  28921  axlowdimlem10  28922  axlowdimlem11  28923  axlowdimlem12  28924  0oo  30759  occllem  31273  ho01i  31798  nlelchi  32031  hmopidmchi  32121  elrgspnlem1  33199  gsumind  33300  eulerpartlemt  34374  plymul02  34549  breprexpnat  34637  fullfunfnv  35959  fullfunfv  35960  poimirlem16  37655  poimirlem19  37658  poimirlem23  37662  poimirlem24  37663  poimirlem25  37664  poimirlem28  37667  poimirlem29  37668  poimirlem30  37669  poimirlem31  37670  poimirlem32  37671  ftc1anclem5  37716  lfl0f  39087  diophrw  42771  pwssplit4  43101  ofsubid  44336  dvsconst  44342  dvsid  44343  binomcxplemnn0  44361  binomcxplemnotnn0  44368  functermc  49519  aacllem  49812
  Copyright terms: Public domain W3C validator