![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5744 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6703 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6181 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6557 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 709 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3473 ⊆ wss 3949 {csn 4632 × cxp 5680 ran crn 5683 Fn wfn 6548 ⟶wf 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-fun 6555 df-fn 6556 df-f 6557 |
This theorem is referenced by: fconstg 6789 fodomr 9159 ofsubeq0 12247 ser0f 14060 hashgval 14332 hashinf 14334 hashfxnn0 14336 prodf1f 15878 pwssplit1 20951 psrbag0 22013 xkofvcn 23608 rrx0el 25346 ibl0 25736 dvcmul 25895 dvcmulf 25896 dvexp 25905 elqaalem3 26276 basellem7 27039 basellem9 27041 noetasuplem4 27689 axlowdimlem8 28780 axlowdimlem9 28781 axlowdimlem10 28782 axlowdimlem11 28783 axlowdimlem12 28784 0oo 30619 occllem 31133 ho01i 31658 nlelchi 31891 hmopidmchi 31981 eulerpartlemt 34024 plymul02 34211 breprexpnat 34299 fullfunfnv 35575 fullfunfv 35576 poimirlem16 37142 poimirlem19 37145 poimirlem23 37149 poimirlem24 37150 poimirlem25 37151 poimirlem28 37154 poimirlem29 37155 poimirlem30 37156 poimirlem31 37157 poimirlem32 37158 ftc1anclem5 37203 lfl0f 38573 diophrw 42210 pwssplit4 42544 ofsubid 43792 dvsconst 43798 dvsid 43799 binomcxplemnn0 43817 binomcxplemnotnn0 43824 aacllem 48312 |
Copyright terms: Public domain | W3C validator |