| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5727 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6691 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6172 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6545 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 × cxp 5663 ran crn 5666 Fn wfn 6536 ⟶wf 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6543 df-fn 6544 df-f 6545 |
| This theorem is referenced by: fconstg 6775 fodomr 9150 fodomfir 9350 ofsubeq0 12245 ser0f 14078 hashgval 14354 hashinf 14356 hashfxnn0 14358 prodf1f 15910 pwssplit1 21026 psrbag0 22034 xkofvcn 23638 rrx0el 25368 ibl0 25758 dvcmul 25917 dvcmulf 25918 dvexp 25927 elqaalem3 26299 basellem7 27066 basellem9 27068 noetasuplem4 27717 axlowdimlem8 28894 axlowdimlem9 28895 axlowdimlem10 28896 axlowdimlem11 28897 axlowdimlem12 28898 0oo 30736 occllem 31250 ho01i 31775 nlelchi 32008 hmopidmchi 32098 elrgspnlem1 33185 eulerpartlemt 34332 plymul02 34520 breprexpnat 34608 fullfunfnv 35906 fullfunfv 35907 poimirlem16 37602 poimirlem19 37605 poimirlem23 37609 poimirlem24 37610 poimirlem25 37611 poimirlem28 37614 poimirlem29 37615 poimirlem30 37616 poimirlem31 37617 poimirlem32 37618 ftc1anclem5 37663 lfl0f 39029 diophrw 42733 pwssplit4 43064 ofsubid 44300 dvsconst 44306 dvsid 44307 binomcxplemnn0 44325 binomcxplemnotnn0 44332 functermc 49121 aacllem 49328 |
| Copyright terms: Public domain | W3C validator |