![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5738 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6693 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6171 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6547 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 709 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 {csn 4628 × cxp 5674 ran crn 5677 Fn wfn 6538 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: fconstg 6778 fodomr 9130 ofsubeq0 12213 ser0f 14025 hashgval 14297 hashinf 14299 hashfxnn0 14301 prodf1f 15842 pwssplit1 20814 psrbag0 21842 xkofvcn 23408 rrx0el 25139 ibl0 25528 dvcmul 25685 dvcmulf 25686 dvexp 25694 elqaalem3 26058 basellem7 26815 basellem9 26817 noetasuplem4 27463 axlowdimlem8 28462 axlowdimlem9 28463 axlowdimlem10 28464 axlowdimlem11 28465 axlowdimlem12 28466 0oo 30297 occllem 30811 ho01i 31336 nlelchi 31569 hmopidmchi 31659 eulerpartlemt 33656 plymul02 33843 breprexpnat 33932 fullfunfnv 35210 fullfunfv 35211 poimirlem16 36807 poimirlem19 36810 poimirlem23 36814 poimirlem24 36815 poimirlem25 36816 poimirlem28 36819 poimirlem29 36820 poimirlem30 36821 poimirlem31 36822 poimirlem32 36823 ftc1anclem5 36868 lfl0f 38242 diophrw 41799 pwssplit4 42133 ofsubid 43385 dvsconst 43391 dvsid 43392 binomcxplemnn0 43410 binomcxplemnotnn0 43417 aacllem 47936 |
Copyright terms: Public domain | W3C validator |