MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst Structured version   Visualization version   GIF version

Theorem fconst 6774
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1 𝐵 ∈ V
Assertion
Ref Expression
fconst (𝐴 × {𝐵}):𝐴⟶{𝐵}

Proof of Theorem fconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3 𝐵 ∈ V
2 fconstmpt 5727 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fnmpti 6691 . 2 (𝐴 × {𝐵}) Fn 𝐴
4 rnxpss 6172 . 2 ran (𝐴 × {𝐵}) ⊆ {𝐵}
5 df-f 6545 . 2 ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵}))
63, 4, 5mpbir2an 711 1 (𝐴 × {𝐵}):𝐴⟶{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463  wss 3931  {csn 4606   × cxp 5663  ran crn 5666   Fn wfn 6536  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-fun 6543  df-fn 6544  df-f 6545
This theorem is referenced by:  fconstg  6775  fodomr  9150  fodomfir  9350  ofsubeq0  12245  ser0f  14078  hashgval  14354  hashinf  14356  hashfxnn0  14358  prodf1f  15910  pwssplit1  21026  psrbag0  22034  xkofvcn  23638  rrx0el  25368  ibl0  25758  dvcmul  25917  dvcmulf  25918  dvexp  25927  elqaalem3  26299  basellem7  27066  basellem9  27068  noetasuplem4  27717  axlowdimlem8  28894  axlowdimlem9  28895  axlowdimlem10  28896  axlowdimlem11  28897  axlowdimlem12  28898  0oo  30736  occllem  31250  ho01i  31775  nlelchi  32008  hmopidmchi  32098  elrgspnlem1  33185  eulerpartlemt  34332  plymul02  34520  breprexpnat  34608  fullfunfnv  35906  fullfunfv  35907  poimirlem16  37602  poimirlem19  37605  poimirlem23  37609  poimirlem24  37610  poimirlem25  37611  poimirlem28  37614  poimirlem29  37615  poimirlem30  37616  poimirlem31  37617  poimirlem32  37618  ftc1anclem5  37663  lfl0f  39029  diophrw  42733  pwssplit4  43064  ofsubid  44300  dvsconst  44306  dvsid  44307  binomcxplemnn0  44325  binomcxplemnotnn0  44332  functermc  49121  aacllem  49328
  Copyright terms: Public domain W3C validator