| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5702 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6663 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6147 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6517 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 {csn 4591 × cxp 5638 ran crn 5641 Fn wfn 6508 ⟶wf 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 |
| This theorem is referenced by: fconstg 6749 fodomr 9097 fodomfir 9285 ofsubeq0 12184 ser0f 14026 hashgval 14304 hashinf 14306 hashfxnn0 14308 prodf1f 15864 pwssplit1 20972 psrbag0 21975 xkofvcn 23577 rrx0el 25304 ibl0 25694 dvcmul 25853 dvcmulf 25854 dvexp 25863 elqaalem3 26235 basellem7 27003 basellem9 27005 noetasuplem4 27654 axlowdimlem8 28882 axlowdimlem9 28883 axlowdimlem10 28884 axlowdimlem11 28885 axlowdimlem12 28886 0oo 30724 occllem 31238 ho01i 31763 nlelchi 31996 hmopidmchi 32086 elrgspnlem1 33199 eulerpartlemt 34368 plymul02 34543 breprexpnat 34631 fullfunfnv 35929 fullfunfv 35930 poimirlem16 37625 poimirlem19 37628 poimirlem23 37632 poimirlem24 37633 poimirlem25 37634 poimirlem28 37637 poimirlem29 37638 poimirlem30 37639 poimirlem31 37640 poimirlem32 37641 ftc1anclem5 37686 lfl0f 39057 diophrw 42740 pwssplit4 43071 ofsubid 44306 dvsconst 44312 dvsid 44313 binomcxplemnn0 44331 binomcxplemnotnn0 44338 functermc 49487 aacllem 49780 |
| Copyright terms: Public domain | W3C validator |