| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5721 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6686 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6166 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6540 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {csn 4606 × cxp 5657 ran crn 5660 Fn wfn 6531 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: fconstg 6770 fodomr 9147 fodomfir 9345 ofsubeq0 12242 ser0f 14078 hashgval 14356 hashinf 14358 hashfxnn0 14360 prodf1f 15913 pwssplit1 21022 psrbag0 22025 xkofvcn 23627 rrx0el 25355 ibl0 25745 dvcmul 25904 dvcmulf 25905 dvexp 25914 elqaalem3 26286 basellem7 27054 basellem9 27056 noetasuplem4 27705 axlowdimlem8 28933 axlowdimlem9 28934 axlowdimlem10 28935 axlowdimlem11 28936 axlowdimlem12 28937 0oo 30775 occllem 31289 ho01i 31814 nlelchi 32047 hmopidmchi 32137 elrgspnlem1 33242 eulerpartlemt 34408 plymul02 34583 breprexpnat 34671 fullfunfnv 35969 fullfunfv 35970 poimirlem16 37665 poimirlem19 37668 poimirlem23 37672 poimirlem24 37673 poimirlem25 37674 poimirlem28 37677 poimirlem29 37678 poimirlem30 37679 poimirlem31 37680 poimirlem32 37681 ftc1anclem5 37726 lfl0f 39092 diophrw 42749 pwssplit4 43080 ofsubid 44315 dvsconst 44321 dvsid 44322 binomcxplemnn0 44340 binomcxplemnotnn0 44347 functermc 49360 aacllem 49632 |
| Copyright terms: Public domain | W3C validator |