| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5700 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6661 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6145 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6515 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 × cxp 5636 ran crn 5639 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fconstg 6747 fodomr 9092 fodomfir 9279 ofsubeq0 12183 ser0f 14020 hashgval 14298 hashinf 14300 hashfxnn0 14302 prodf1f 15858 pwssplit1 20966 psrbag0 21969 xkofvcn 23571 rrx0el 25298 ibl0 25688 dvcmul 25847 dvcmulf 25848 dvexp 25857 elqaalem3 26229 basellem7 26997 basellem9 26999 noetasuplem4 27648 axlowdimlem8 28876 axlowdimlem9 28877 axlowdimlem10 28878 axlowdimlem11 28879 axlowdimlem12 28880 0oo 30718 occllem 31232 ho01i 31757 nlelchi 31990 hmopidmchi 32080 elrgspnlem1 33193 eulerpartlemt 34362 plymul02 34537 breprexpnat 34625 fullfunfnv 35934 fullfunfv 35935 poimirlem16 37630 poimirlem19 37633 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem28 37642 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimirlem32 37646 ftc1anclem5 37691 lfl0f 39062 diophrw 42747 pwssplit4 43078 ofsubid 44313 dvsconst 44319 dvsid 44320 binomcxplemnn0 44338 binomcxplemnotnn0 44345 functermc 49497 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |