Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fconstmpt 5660 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6606 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
4 | rnxpss 6090 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
5 | df-f 6462 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
6 | 3, 4, 5 | mpbir2an 709 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 {csn 4565 × cxp 5598 ran crn 5601 Fn wfn 6453 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: fconstg 6691 fodomr 8953 ofsubeq0 12016 ser0f 13822 hashgval 14093 hashinf 14095 hashfxnn0 14097 prodf1f 15649 pwssplit1 20366 psrbag0 21315 xkofvcn 22880 rrx0el 24607 ibl0 24996 dvcmul 25153 dvcmulf 25154 dvexp 25162 elqaalem3 25526 basellem7 26281 basellem9 26283 axlowdimlem8 27362 axlowdimlem9 27363 axlowdimlem10 27364 axlowdimlem11 27365 axlowdimlem12 27366 0oo 29196 occllem 29710 ho01i 30235 nlelchi 30468 hmopidmchi 30558 eulerpartlemt 32383 plymul02 32570 breprexpnat 32659 noetasuplem4 33984 fullfunfnv 34293 fullfunfv 34294 poimirlem16 35837 poimirlem19 35840 poimirlem23 35844 poimirlem24 35845 poimirlem25 35846 poimirlem28 35849 poimirlem29 35850 poimirlem30 35851 poimirlem31 35852 poimirlem32 35853 ftc1anclem5 35898 lfl0f 37125 diophrw 40618 pwssplit4 40952 ofsubid 41980 dvsconst 41986 dvsid 41987 binomcxplemnn0 42005 binomcxplemnotnn0 42012 aacllem 46563 |
Copyright terms: Public domain | W3C validator |