MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst Structured version   Visualization version   GIF version

Theorem fconst 6690
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1 𝐵 ∈ V
Assertion
Ref Expression
fconst (𝐴 × {𝐵}):𝐴⟶{𝐵}

Proof of Theorem fconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3 𝐵 ∈ V
2 fconstmpt 5660 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fnmpti 6606 . 2 (𝐴 × {𝐵}) Fn 𝐴
4 rnxpss 6090 . 2 ran (𝐴 × {𝐵}) ⊆ {𝐵}
5 df-f 6462 . 2 ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵}))
63, 4, 5mpbir2an 709 1 (𝐴 × {𝐵}):𝐴⟶{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  Vcvv 3437  wss 3892  {csn 4565   × cxp 5598  ran crn 5601   Fn wfn 6453  wf 6454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-fun 6460  df-fn 6461  df-f 6462
This theorem is referenced by:  fconstg  6691  fodomr  8953  ofsubeq0  12016  ser0f  13822  hashgval  14093  hashinf  14095  hashfxnn0  14097  prodf1f  15649  pwssplit1  20366  psrbag0  21315  xkofvcn  22880  rrx0el  24607  ibl0  24996  dvcmul  25153  dvcmulf  25154  dvexp  25162  elqaalem3  25526  basellem7  26281  basellem9  26283  axlowdimlem8  27362  axlowdimlem9  27363  axlowdimlem10  27364  axlowdimlem11  27365  axlowdimlem12  27366  0oo  29196  occllem  29710  ho01i  30235  nlelchi  30468  hmopidmchi  30558  eulerpartlemt  32383  plymul02  32570  breprexpnat  32659  noetasuplem4  33984  fullfunfnv  34293  fullfunfv  34294  poimirlem16  35837  poimirlem19  35840  poimirlem23  35844  poimirlem24  35845  poimirlem25  35846  poimirlem28  35849  poimirlem29  35850  poimirlem30  35851  poimirlem31  35852  poimirlem32  35853  ftc1anclem5  35898  lfl0f  37125  diophrw  40618  pwssplit4  40952  ofsubid  41980  dvsconst  41986  dvsid  41987  binomcxplemnn0  42005  binomcxplemnotnn0  42012  aacllem  46563
  Copyright terms: Public domain W3C validator