| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 5685 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6629 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 6125 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 6490 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 711 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {csn 4579 × cxp 5621 ran crn 5624 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fconstg 6715 fodomr 9052 fodomfir 9237 ofsubeq0 12143 ser0f 13980 hashgval 14258 hashinf 14260 hashfxnn0 14262 prodf1f 15817 pwssplit1 20981 psrbag0 21985 xkofvcn 23587 rrx0el 25314 ibl0 25704 dvcmul 25863 dvcmulf 25864 dvexp 25873 elqaalem3 26245 basellem7 27013 basellem9 27015 noetasuplem4 27664 axlowdimlem8 28912 axlowdimlem9 28913 axlowdimlem10 28914 axlowdimlem11 28915 axlowdimlem12 28916 0oo 30751 occllem 31265 ho01i 31790 nlelchi 32023 hmopidmchi 32113 elrgspnlem1 33192 eulerpartlemt 34338 plymul02 34513 breprexpnat 34601 fullfunfnv 35919 fullfunfv 35920 poimirlem16 37615 poimirlem19 37618 poimirlem23 37622 poimirlem24 37623 poimirlem25 37624 poimirlem28 37627 poimirlem29 37628 poimirlem30 37629 poimirlem31 37630 poimirlem32 37631 ftc1anclem5 37676 lfl0f 39047 diophrw 42732 pwssplit4 43062 ofsubid 44297 dvsconst 44303 dvsid 44304 binomcxplemnn0 44322 binomcxplemnotnn0 44329 functermc 49481 aacllem 49774 |
| Copyright terms: Public domain | W3C validator |