Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f0dom0 | Structured version Visualization version GIF version |
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.) |
Ref | Expression |
---|---|
f0dom0 | ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6582 | . . . 4 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∅⟶𝑌)) | |
2 | f0bi 6657 | . . . . 5 ⊢ (𝐹:∅⟶𝑌 ↔ 𝐹 = ∅) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝐹:∅⟶𝑌 → 𝐹 = ∅) |
4 | 1, 3 | syl6bi 252 | . . 3 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 → 𝐹 = ∅)) |
5 | 4 | com12 32 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ → 𝐹 = ∅)) |
6 | feq1 6581 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 ↔ ∅:𝑋⟶𝑌)) | |
7 | fdm 6609 | . . . . 5 ⊢ (∅:𝑋⟶𝑌 → dom ∅ = 𝑋) | |
8 | dm0 5829 | . . . . 5 ⊢ dom ∅ = ∅ | |
9 | 7, 8 | eqtr3di 2793 | . . . 4 ⊢ (∅:𝑋⟶𝑌 → 𝑋 = ∅) |
10 | 6, 9 | syl6bi 252 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) |
11 | 10 | com12 32 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝐹 = ∅ → 𝑋 = ∅)) |
12 | 5, 11 | impbid 211 | 1 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∅c0 4256 dom cdm 5589 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: pfxn0 14399 elfrlmbasn0 20970 mavmulsolcl 21700 fdomne0 46177 |
Copyright terms: Public domain | W3C validator |