| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0dom0 | Structured version Visualization version GIF version | ||
| Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.) |
| Ref | Expression |
|---|---|
| f0dom0 | ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6687 | . . . 4 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∅⟶𝑌)) | |
| 2 | f0bi 6761 | . . . . 5 ⊢ (𝐹:∅⟶𝑌 ↔ 𝐹 = ∅) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐹:∅⟶𝑌 → 𝐹 = ∅) |
| 4 | 1, 3 | biimtrdi 253 | . . 3 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 → 𝐹 = ∅)) |
| 5 | 4 | com12 32 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ → 𝐹 = ∅)) |
| 6 | feq1 6686 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 ↔ ∅:𝑋⟶𝑌)) | |
| 7 | fdm 6715 | . . . . 5 ⊢ (∅:𝑋⟶𝑌 → dom ∅ = 𝑋) | |
| 8 | dm0 5900 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 9 | 7, 8 | eqtr3di 2785 | . . . 4 ⊢ (∅:𝑋⟶𝑌 → 𝑋 = ∅) |
| 10 | 6, 9 | biimtrdi 253 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) |
| 11 | 10 | com12 32 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝐹 = ∅ → 𝑋 = ∅)) |
| 12 | 5, 11 | impbid 212 | 1 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∅c0 4308 dom cdm 5654 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: pfxn0 14704 elfrlmbasn0 21723 mavmulsolcl 22489 wrdpmtrlast 33104 fdomne0 48828 |
| Copyright terms: Public domain | W3C validator |