MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0dom0 Structured version   Visualization version   GIF version

Theorem f0dom0 6658
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 6582 . . . 4 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹:∅⟶𝑌))
2 f0bi 6657 . . . . 5 (𝐹:∅⟶𝑌𝐹 = ∅)
32biimpi 215 . . . 4 (𝐹:∅⟶𝑌𝐹 = ∅)
41, 3syl6bi 252 . . 3 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹 = ∅))
54com12 32 . 2 (𝐹:𝑋𝑌 → (𝑋 = ∅ → 𝐹 = ∅))
6 feq1 6581 . . . 4 (𝐹 = ∅ → (𝐹:𝑋𝑌 ↔ ∅:𝑋𝑌))
7 fdm 6609 . . . . 5 (∅:𝑋𝑌 → dom ∅ = 𝑋)
8 dm0 5829 . . . . 5 dom ∅ = ∅
97, 8eqtr3di 2793 . . . 4 (∅:𝑋𝑌𝑋 = ∅)
106, 9syl6bi 252 . . 3 (𝐹 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
1110com12 32 . 2 (𝐹:𝑋𝑌 → (𝐹 = ∅ → 𝑋 = ∅))
125, 11impbid 211 1 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  c0 4256  dom cdm 5589  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  pfxn0  14399  elfrlmbasn0  20970  mavmulsolcl  21700  fdomne0  46177
  Copyright terms: Public domain W3C validator