![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0dom0 | Structured version Visualization version GIF version |
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.) |
Ref | Expression |
---|---|
f0dom0 | ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6700 | . . . 4 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∅⟶𝑌)) | |
2 | f0bi 6775 | . . . . 5 ⊢ (𝐹:∅⟶𝑌 ↔ 𝐹 = ∅) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝐹:∅⟶𝑌 → 𝐹 = ∅) |
4 | 1, 3 | syl6bi 253 | . . 3 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 → 𝐹 = ∅)) |
5 | 4 | com12 32 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ → 𝐹 = ∅)) |
6 | feq1 6699 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 ↔ ∅:𝑋⟶𝑌)) | |
7 | fdm 6727 | . . . . 5 ⊢ (∅:𝑋⟶𝑌 → dom ∅ = 𝑋) | |
8 | dm0 5921 | . . . . 5 ⊢ dom ∅ = ∅ | |
9 | 7, 8 | eqtr3di 2788 | . . . 4 ⊢ (∅:𝑋⟶𝑌 → 𝑋 = ∅) |
10 | 6, 9 | syl6bi 253 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) |
11 | 10 | com12 32 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝐹 = ∅ → 𝑋 = ∅)) |
12 | 5, 11 | impbid 211 | 1 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∅c0 4323 dom cdm 5677 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 |
This theorem is referenced by: pfxn0 14636 elfrlmbasn0 21318 mavmulsolcl 22053 fdomne0 47516 |
Copyright terms: Public domain | W3C validator |