MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvb Structured version   Visualization version   GIF version

Theorem f1ocnvb 6875
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 6874 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ocnv 6874 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
3 dfrel2 6220 . . . 4 (Rel 𝐹𝐹 = 𝐹)
4 f1oeq1 6850 . . . 4 (𝐹 = 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
53, 4sylbi 217 . . 3 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
62, 5imbitrid 244 . 2 (Rel 𝐹 → (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵))
71, 6impbid2 226 1 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  ccnv 5699  Rel wrel 5705  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  hasheqf1oi  14400
  Copyright terms: Public domain W3C validator