MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvb Structured version   Visualization version   GIF version

Theorem f1ocnvb 6813
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 6812 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ocnv 6812 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
3 dfrel2 6162 . . . 4 (Rel 𝐹𝐹 = 𝐹)
4 f1oeq1 6788 . . . 4 (𝐹 = 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
53, 4sylbi 217 . . 3 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
62, 5imbitrid 244 . 2 (Rel 𝐹 → (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵))
71, 6impbid2 226 1 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  ccnv 5637  Rel wrel 5643  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  hasheqf1oi  14316
  Copyright terms: Public domain W3C validator