| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvb | Structured version Visualization version GIF version | ||
| Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ocnvb | ⊢ (Rel 𝐹 → (𝐹:𝐴–1-1-onto→𝐵 ↔ ◡𝐹:𝐵–1-1-onto→𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6776 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1ocnv 6776 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡◡𝐹:𝐴–1-1-onto→𝐵) | |
| 3 | dfrel2 6138 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 4 | f1oeq1 6752 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
| 5 | 3, 4 | sylbi 217 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
| 6 | 2, 5 | imbitrid 244 | . 2 ⊢ (Rel 𝐹 → (◡𝐹:𝐵–1-1-onto→𝐴 → 𝐹:𝐴–1-1-onto→𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (Rel 𝐹 → (𝐹:𝐴–1-1-onto→𝐵 ↔ ◡𝐹:𝐵–1-1-onto→𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ◡ccnv 5618 Rel wrel 5624 –1-1-onto→wf1o 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: hasheqf1oi 14258 |
| Copyright terms: Public domain | W3C validator |