![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvb | Structured version Visualization version GIF version |
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
f1ocnvb | ⊢ (Rel 𝐹 → (𝐹:𝐴–1-1-onto→𝐵 ↔ ◡𝐹:𝐵–1-1-onto→𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6856 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1ocnv 6856 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡◡𝐹:𝐴–1-1-onto→𝐵) | |
3 | dfrel2 6198 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
4 | f1oeq1 6832 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
5 | 3, 4 | sylbi 216 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
6 | 2, 5 | imbitrid 243 | . 2 ⊢ (Rel 𝐹 → (◡𝐹:𝐵–1-1-onto→𝐴 → 𝐹:𝐴–1-1-onto→𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (Rel 𝐹 → (𝐹:𝐴–1-1-onto→𝐵 ↔ ◡𝐹:𝐵–1-1-onto→𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ◡ccnv 5681 Rel wrel 5687 –1-1-onto→wf1o 6552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 |
This theorem is referenced by: hasheqf1oi 14350 |
Copyright terms: Public domain | W3C validator |