![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ores | Structured version Visualization version GIF version |
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
f1ores | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres 6453 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
2 | f1f1orn 6497 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
4 | df-ima 5459 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
5 | f1oeq3 6477 | . . 3 ⊢ ((𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
7 | 3, 6 | sylibr 235 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ⊆ wss 3861 ran crn 5447 ↾ cres 5448 “ cima 5449 –1-1→wf1 6225 –1-1-onto→wf1o 6227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pr 5224 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-br 4965 df-opab 5027 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 |
This theorem is referenced by: f1imacnv 6502 f1oresrab 6755 isores3 6954 isoini2 6958 f1imaeng 8420 f1imaen2g 8421 domunsncan 8467 php3 8553 ssfi 8587 infdifsn 8969 infxpenlem 9288 ackbij2lem2 9511 fin1a2lem6 9676 grothomex 10100 fsumss 14915 ackbijnn 15016 fprodss 15135 unbenlem 16073 eqgen 18086 symgfixelsi 18294 gsumval3lem1 18746 gsumval3lem2 18747 gsumzaddlem 18761 coe1mul2lem2 20119 lindsmm 20654 tsmsf1o 22436 ovoliunlem1 23786 dvcnvrelem2 24298 logf1o2 24914 dvlog 24915 ushgredgedg 26694 ushgredgedgloop 26696 trlreslem 27163 adjbd1o 29545 rinvf1o 30057 padct 30135 indf1ofs 30894 eulerpartgbij 31239 eulerpartlemgh 31245 ballotlemfrc 31393 reprpmtf1o 31506 erdsze2lem2 32053 poimirlem4 34440 poimirlem9 34445 ismtyres 34631 pwfi2f1o 39194 sge0f1o 42220 f1oresf1o 43019 |
Copyright terms: Public domain | W3C validator |