| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ores | Structured version Visualization version GIF version | ||
| Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1ores | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres 6763 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 2 | f1f1orn 6811 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
| 4 | df-ima 5651 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
| 5 | f1oeq3 6790 | . . 3 ⊢ ((𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶))) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 “ cima 5641 –1-1→wf1 6508 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1imacnv 6816 f1oresrab 7099 f1ocoima 7278 isores3 7310 isoini2 7314 f1imaeng 8985 f1imaen2g 8986 f1imaen3g 8987 domunsncan 9041 ssfiALT 9138 f1imaenfi 9159 php3 9173 infdifsn 9610 infxpenlem 9966 ackbij2lem2 10192 fin1a2lem6 10358 grothomex 10782 fsumss 15691 ackbijnn 15794 fprodss 15914 unbenlem 16879 eqgen 19113 symgfixelsi 19365 gsumval3lem1 19835 gsumval3lem2 19836 gsumzaddlem 19851 lindsmm 21737 coe1mul2lem2 22154 tsmsf1o 24032 ovoliunlem1 25403 dvcnvrelem2 25923 logf1o2 26559 dvlog 26560 ushgredgedg 29156 ushgredgedgloop 29158 trlreslem 29627 adjbd1o 32014 rinvf1o 32554 padct 32643 indf1ofs 32789 eulerpartgbij 34363 eulerpartlemgh 34369 ballotlemfrc 34518 reprpmtf1o 34617 erdsze2lem2 35191 poimirlem4 37618 poimirlem9 37623 ismtyres 37802 pwfi2f1o 43085 sge0f1o 46380 3f1oss1 47076 f1oresf1o 47291 uhgrimisgrgric 47931 |
| Copyright terms: Public domain | W3C validator |