![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ores | Structured version Visualization version GIF version |
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
f1ores | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres 6824 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
2 | f1f1orn 6873 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
4 | df-ima 5713 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
5 | f1oeq3 6852 | . . 3 ⊢ ((𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
7 | 3, 6 | sylibr 234 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ran crn 5701 ↾ cres 5702 “ cima 5703 –1-1→wf1 6570 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: f1imacnv 6878 f1oresrab 7161 f1ocoima 7339 isores3 7371 isoini2 7375 f1imaeng 9074 f1imaen2g 9075 f1imaen3g 9076 domunsncan 9138 ssfiALT 9241 f1imaenfi 9261 php3 9275 php3OLD 9287 infdifsn 9726 infxpenlem 10082 ackbij2lem2 10308 fin1a2lem6 10474 grothomex 10898 fsumss 15773 ackbijnn 15876 fprodss 15996 unbenlem 16955 eqgen 19221 symgfixelsi 19477 gsumval3lem1 19947 gsumval3lem2 19948 gsumzaddlem 19963 lindsmm 21871 coe1mul2lem2 22292 tsmsf1o 24174 ovoliunlem1 25556 dvcnvrelem2 26077 logf1o2 26710 dvlog 26711 ushgredgedg 29264 ushgredgedgloop 29266 trlreslem 29735 adjbd1o 32117 rinvf1o 32649 padct 32733 indf1ofs 33990 eulerpartgbij 34337 eulerpartlemgh 34343 ballotlemfrc 34491 reprpmtf1o 34603 erdsze2lem2 35172 poimirlem4 37584 poimirlem9 37589 ismtyres 37768 pwfi2f1o 43053 sge0f1o 46303 3f1oss1 46990 f1oresf1o 47205 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |