| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ores | Structured version Visualization version GIF version | ||
| Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1ores | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres 6726 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 2 | f1f1orn 6774 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
| 4 | df-ima 5627 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
| 5 | f1oeq3 6753 | . . 3 ⊢ ((𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶))) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3897 ran crn 5615 ↾ cres 5616 “ cima 5617 –1-1→wf1 6478 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: f1imacnv 6779 f1oresrab 7060 f1ocoima 7237 isores3 7269 isoini2 7273 f1imaeng 8936 f1imaen2g 8937 f1imaen3g 8938 domunsncan 8990 ssfiALT 9083 f1imaenfi 9104 php3 9118 infdifsn 9547 infxpenlem 9904 ackbij2lem2 10130 fin1a2lem6 10296 grothomex 10720 fsumss 15632 ackbijnn 15735 fprodss 15855 unbenlem 16820 eqgen 19093 symgfixelsi 19347 gsumval3lem1 19817 gsumval3lem2 19818 gsumzaddlem 19833 lindsmm 21765 coe1mul2lem2 22182 tsmsf1o 24060 ovoliunlem1 25430 dvcnvrelem2 25950 logf1o2 26586 dvlog 26587 ushgredgedg 29207 ushgredgedgloop 29209 trlreslem 29676 adjbd1o 32065 rinvf1o 32612 padct 32701 hashimaf1 32793 indf1ofs 32847 eulerpartgbij 34385 eulerpartlemgh 34391 ballotlemfrc 34540 reprpmtf1o 34639 erdsze2lem2 35248 poimirlem4 37672 poimirlem9 37677 ismtyres 37856 pwfi2f1o 43137 sge0f1o 46428 3f1oss1 47114 f1oresf1o 47329 uhgrimisgrgric 47970 |
| Copyright terms: Public domain | W3C validator |