Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncficcgt0 Structured version   Visualization version   GIF version

Theorem cncficcgt0 45114
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncficcgt0.f 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
cncficcgt0.a (𝜑𝐴 ∈ ℝ)
cncficcgt0.b (𝜑𝐵 ∈ ℝ)
cncficcgt0.aleb (𝜑𝐴𝐵)
cncficcgt0.fcn (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
Assertion
Ref Expression
cncficcgt0 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cncficcgt0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncficcgt0.fcn . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
2 cncff 24737 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) → 𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
3 ffun 6711 . . . . . . . 8 (𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}) → Fun 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐹)
54adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
6 simpr 484 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
71, 2syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
87fdmd 6719 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
98eqcomd 2730 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
109adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
116, 10eleqtrd 2827 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ dom 𝐹)
12 fvco 6980 . . . . . 6 ((Fun 𝐹𝑐 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
135, 11, 12syl2anc 583 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
147ffvelcdmda 7077 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ (ℝ ∖ {0}))
1514eldifad 3953 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℝ)
1615recnd 11240 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℂ)
17 eldifsni 4786 . . . . . . 7 ((𝐹𝑐) ∈ (ℝ ∖ {0}) → (𝐹𝑐) ≠ 0)
1814, 17syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ≠ 0)
1916, 18absrpcld 15393 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑐)) ∈ ℝ+)
2013, 19eqeltrd 2825 . . . 4 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
2120adantr 480 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
22 nfv 1909 . . . . 5 𝑥(𝜑𝑐 ∈ (𝐴[,]𝐵))
23 nfcv 2895 . . . . . 6 𝑥(𝐴[,]𝐵)
24 nfcv 2895 . . . . . . . . 9 𝑥abs
25 cncficcgt0.f . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
26 nfmpt1 5247 . . . . . . . . . 10 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
2725, 26nfcxfr 2893 . . . . . . . . 9 𝑥𝐹
2824, 27nfco 5856 . . . . . . . 8 𝑥(abs ∘ 𝐹)
29 nfcv 2895 . . . . . . . 8 𝑥𝑐
3028, 29nffv 6892 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑐)
31 nfcv 2895 . . . . . . 7 𝑥
32 nfcv 2895 . . . . . . . 8 𝑥𝑑
3328, 32nffv 6892 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑑)
3430, 31, 33nfbr 5186 . . . . . 6 𝑥((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3523, 34nfralw 3300 . . . . 5 𝑥𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3622, 35nfan 1894 . . . 4 𝑥((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
37 fveq2 6882 . . . . . . . . 9 (𝑑 = 𝑥 → ((abs ∘ 𝐹)‘𝑑) = ((abs ∘ 𝐹)‘𝑥))
3837breq2d 5151 . . . . . . . 8 (𝑑 = 𝑥 → (((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥)))
3938rspccva 3603 . . . . . . 7 ((∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
4039adantll 711 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
41 absf 15282 . . . . . . . . . . 11 abs:ℂ⟶ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 → abs:ℂ⟶ℝ)
43 difss 4124 . . . . . . . . . . . . 13 (ℝ ∖ {0}) ⊆ ℝ
44 ax-resscn 11164 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 3984 . . . . . . . . . . . 12 (ℝ ∖ {0}) ⊆ ℂ
4645a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
477, 46fssd 6726 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
48 fcompt 7124 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
4942, 47, 48syl2anc 583 . . . . . . . . 9 (𝜑 → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
50 nfcv 2895 . . . . . . . . . . . . 13 𝑥𝑧
5127, 50nffv 6892 . . . . . . . . . . . 12 𝑥(𝐹𝑧)
5224, 51nffv 6892 . . . . . . . . . . 11 𝑥(abs‘(𝐹𝑧))
53 nfcv 2895 . . . . . . . . . . 11 𝑧(abs‘(𝐹𝑥))
54 fveq2 6882 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5554fveq2d 6886 . . . . . . . . . . 11 (𝑧 = 𝑥 → (abs‘(𝐹𝑧)) = (abs‘(𝐹𝑥)))
5652, 53, 55cbvmpt 5250 . . . . . . . . . 10 (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥)))
5756a1i 11 . . . . . . . . 9 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))))
5825a1i 11 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶))
5958, 7feq1dd 44376 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
6059fvmptelcdm 7105 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (ℝ ∖ {0}))
6158, 60fvmpt2d 7002 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = 𝐶)
6261fveq2d 6886 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑥)) = (abs‘𝐶))
6362mpteq2dva 5239 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6449, 57, 633eqtrd 2768 . . . . . . . 8 (𝜑 → (abs ∘ 𝐹) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6545, 60sselid 3973 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
6665abscld 15381 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘𝐶) ∈ ℝ)
6764, 66fvmpt2d 7002 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6867ad4ant14 749 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6940, 68breqtrd 5165 . . . . 5 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7069ex 412 . . . 4 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → (𝑥 ∈ (𝐴[,]𝐵) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7136, 70ralrimi 3246 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7230nfeq2 2912 . . . . 5 𝑥 𝑦 = ((abs ∘ 𝐹)‘𝑐)
73 breq1 5142 . . . . 5 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (𝑦 ≤ (abs‘𝐶) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7472, 73ralbid 3262 . . . 4 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7574rspcev 3604 . . 3 ((((abs ∘ 𝐹)‘𝑐) ∈ ℝ+ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
7621, 71, 75syl2anc 583 . 2 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
77 cncficcgt0.a . . . 4 (𝜑𝐴 ∈ ℝ)
78 cncficcgt0.b . . . 4 (𝜑𝐵 ∈ ℝ)
79 cncficcgt0.aleb . . . 4 (𝜑𝐴𝐵)
80 ssidd 3998 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
81 cncfss 24743 . . . . . . 7 (((ℝ ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8246, 80, 81syl2anc 583 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8382, 1sseldd 3976 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
84 abscncf 24745 . . . . . 6 abs ∈ (ℂ–cn→ℝ)
8584a1i 11 . . . . 5 (𝜑 → abs ∈ (ℂ–cn→ℝ))
8683, 85cncfco 24751 . . . 4 (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ))
8777, 78, 79, 86evthicc 25312 . . 3 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑏) ≤ ((abs ∘ 𝐹)‘𝑎) ∧ ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)))
8887simprd 495 . 2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
8976, 88r19.29a 3154 1 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  cdif 3938  wss 3941  {csn 4621   class class class wbr 5139  cmpt 5222  dom cdm 5667  ccom 5671  Fun wfun 6528  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  0cc0 11107  cle 11247  +crp 12972  [,]cicc 13325  abscabs 15179  cnccncf 24720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioo 13326  df-icc 13329  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18988  df-cntz 19225  df-cmn 19694  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cn 23055  df-cnp 23056  df-cmp 23215  df-tx 23390  df-hmeo 23583  df-xms 24150  df-ms 24151  df-tms 24152  df-cncf 24722
This theorem is referenced by:  fourierdlem68  45400
  Copyright terms: Public domain W3C validator