Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncficcgt0 Structured version   Visualization version   GIF version

Theorem cncficcgt0 42252
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncficcgt0.f 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
cncficcgt0.a (𝜑𝐴 ∈ ℝ)
cncficcgt0.b (𝜑𝐵 ∈ ℝ)
cncficcgt0.aleb (𝜑𝐴𝐵)
cncficcgt0.fcn (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
Assertion
Ref Expression
cncficcgt0 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cncficcgt0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncficcgt0.fcn . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
2 cncff 23494 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) → 𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
3 ffun 6510 . . . . . . . 8 (𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}) → Fun 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐹)
54adantr 483 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
6 simpr 487 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
71, 2syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
87fdmd 6516 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
98eqcomd 2826 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
109adantr 483 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
116, 10eleqtrd 2914 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ dom 𝐹)
12 fvco 6752 . . . . . 6 ((Fun 𝐹𝑐 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
135, 11, 12syl2anc 586 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
147ffvelrnda 6844 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ (ℝ ∖ {0}))
1514eldifad 3941 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℝ)
1615recnd 10662 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℂ)
17 eldifsni 4715 . . . . . . 7 ((𝐹𝑐) ∈ (ℝ ∖ {0}) → (𝐹𝑐) ≠ 0)
1814, 17syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ≠ 0)
1916, 18absrpcld 14801 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑐)) ∈ ℝ+)
2013, 19eqeltrd 2912 . . . 4 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
2120adantr 483 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
22 nfv 1914 . . . . 5 𝑥(𝜑𝑐 ∈ (𝐴[,]𝐵))
23 nfcv 2976 . . . . . 6 𝑥(𝐴[,]𝐵)
24 nfcv 2976 . . . . . . . . 9 𝑥abs
25 cncficcgt0.f . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
26 nfmpt1 5157 . . . . . . . . . 10 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
2725, 26nfcxfr 2974 . . . . . . . . 9 𝑥𝐹
2824, 27nfco 5729 . . . . . . . 8 𝑥(abs ∘ 𝐹)
29 nfcv 2976 . . . . . . . 8 𝑥𝑐
3028, 29nffv 6673 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑐)
31 nfcv 2976 . . . . . . 7 𝑥
32 nfcv 2976 . . . . . . . 8 𝑥𝑑
3328, 32nffv 6673 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑑)
3430, 31, 33nfbr 5106 . . . . . 6 𝑥((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3523, 34nfralw 3224 . . . . 5 𝑥𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3622, 35nfan 1899 . . . 4 𝑥((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
37 fveq2 6663 . . . . . . . . 9 (𝑑 = 𝑥 → ((abs ∘ 𝐹)‘𝑑) = ((abs ∘ 𝐹)‘𝑥))
3837breq2d 5071 . . . . . . . 8 (𝑑 = 𝑥 → (((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥)))
3938rspccva 3619 . . . . . . 7 ((∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
4039adantll 712 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
41 absf 14690 . . . . . . . . . . 11 abs:ℂ⟶ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 → abs:ℂ⟶ℝ)
43 difss 4101 . . . . . . . . . . . . 13 (ℝ ∖ {0}) ⊆ ℝ
44 ax-resscn 10587 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 3969 . . . . . . . . . . . 12 (ℝ ∖ {0}) ⊆ ℂ
4645a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
477, 46fssd 6521 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
48 fcompt 6888 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
4942, 47, 48syl2anc 586 . . . . . . . . 9 (𝜑 → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
50 nfcv 2976 . . . . . . . . . . . . 13 𝑥𝑧
5127, 50nffv 6673 . . . . . . . . . . . 12 𝑥(𝐹𝑧)
5224, 51nffv 6673 . . . . . . . . . . 11 𝑥(abs‘(𝐹𝑧))
53 nfcv 2976 . . . . . . . . . . 11 𝑧(abs‘(𝐹𝑥))
54 fveq2 6663 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5554fveq2d 6667 . . . . . . . . . . 11 (𝑧 = 𝑥 → (abs‘(𝐹𝑧)) = (abs‘(𝐹𝑥)))
5652, 53, 55cbvmpt 5160 . . . . . . . . . 10 (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥)))
5756a1i 11 . . . . . . . . 9 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))))
5825a1i 11 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶))
5958, 7feq1dd 41504 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
6059fvmptelrn 6870 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (ℝ ∖ {0}))
6158, 60fvmpt2d 6774 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = 𝐶)
6261fveq2d 6667 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑥)) = (abs‘𝐶))
6362mpteq2dva 5154 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6449, 57, 633eqtrd 2859 . . . . . . . 8 (𝜑 → (abs ∘ 𝐹) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6545, 60sseldi 3958 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
6665abscld 14789 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘𝐶) ∈ ℝ)
6764, 66fvmpt2d 6774 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6867ad4ant14 750 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6940, 68breqtrd 5085 . . . . 5 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7069ex 415 . . . 4 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → (𝑥 ∈ (𝐴[,]𝐵) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7136, 70ralrimi 3215 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7230nfeq2 2994 . . . . 5 𝑥 𝑦 = ((abs ∘ 𝐹)‘𝑐)
73 breq1 5062 . . . . 5 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (𝑦 ≤ (abs‘𝐶) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7472, 73ralbid 3230 . . . 4 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7574rspcev 3620 . . 3 ((((abs ∘ 𝐹)‘𝑐) ∈ ℝ+ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
7621, 71, 75syl2anc 586 . 2 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
77 cncficcgt0.a . . . 4 (𝜑𝐴 ∈ ℝ)
78 cncficcgt0.b . . . 4 (𝜑𝐵 ∈ ℝ)
79 cncficcgt0.aleb . . . 4 (𝜑𝐴𝐵)
80 ssidd 3983 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
81 cncfss 23500 . . . . . . 7 (((ℝ ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8246, 80, 81syl2anc 586 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8382, 1sseldd 3961 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
84 abscncf 23502 . . . . . 6 abs ∈ (ℂ–cn→ℝ)
8584a1i 11 . . . . 5 (𝜑 → abs ∈ (ℂ–cn→ℝ))
8683, 85cncfco 23508 . . . 4 (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ))
8777, 78, 79, 86evthicc 24053 . . 3 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑏) ≤ ((abs ∘ 𝐹)‘𝑎) ∧ ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)))
8887simprd 498 . 2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
8976, 88r19.29a 3288 1 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3015  wral 3137  wrex 3138  cdif 3926  wss 3929  {csn 4560   class class class wbr 5059  cmpt 5139  dom cdm 5548  ccom 5552  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7149  cc 10528  cr 10529  0cc0 10530  cle 10669  +crp 12383  [,]cicc 12735  abscabs 14586  cnccncf 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-icc 12739  df-fz 12890  df-fzo 13031  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-rest 16689  df-topn 16690  df-0g 16708  df-gsum 16709  df-topgen 16710  df-pt 16711  df-prds 16714  df-xrs 16768  df-qtop 16773  df-imas 16774  df-xps 16776  df-mre 16850  df-mrc 16851  df-acs 16853  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-submnd 17950  df-mulg 18218  df-cntz 18440  df-cmn 18901  df-psmet 20530  df-xmet 20531  df-met 20532  df-bl 20533  df-mopn 20534  df-cnfld 20539  df-top 21495  df-topon 21512  df-topsp 21534  df-bases 21547  df-cn 21828  df-cnp 21829  df-cmp 21988  df-tx 22163  df-hmeo 22356  df-xms 22923  df-ms 22924  df-tms 22925  df-cncf 23479
This theorem is referenced by:  fourierdlem68  42540
  Copyright terms: Public domain W3C validator