Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncficcgt0 Structured version   Visualization version   GIF version

Theorem cncficcgt0 45809
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncficcgt0.f 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
cncficcgt0.a (𝜑𝐴 ∈ ℝ)
cncficcgt0.b (𝜑𝐵 ∈ ℝ)
cncficcgt0.aleb (𝜑𝐴𝐵)
cncficcgt0.fcn (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
Assertion
Ref Expression
cncficcgt0 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cncficcgt0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncficcgt0.fcn . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
2 cncff 24938 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) → 𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
3 ffun 6750 . . . . . . . 8 (𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}) → Fun 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐹)
54adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
6 simpr 484 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
71, 2syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
87fdmd 6757 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
98eqcomd 2746 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
109adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
116, 10eleqtrd 2846 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ dom 𝐹)
12 fvco 7020 . . . . . 6 ((Fun 𝐹𝑐 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
135, 11, 12syl2anc 583 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
147ffvelcdmda 7118 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ (ℝ ∖ {0}))
1514eldifad 3988 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℝ)
1615recnd 11318 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℂ)
17 eldifsni 4815 . . . . . . 7 ((𝐹𝑐) ∈ (ℝ ∖ {0}) → (𝐹𝑐) ≠ 0)
1814, 17syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ≠ 0)
1916, 18absrpcld 15497 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑐)) ∈ ℝ+)
2013, 19eqeltrd 2844 . . . 4 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
2120adantr 480 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
22 nfv 1913 . . . . 5 𝑥(𝜑𝑐 ∈ (𝐴[,]𝐵))
23 nfcv 2908 . . . . . 6 𝑥(𝐴[,]𝐵)
24 nfcv 2908 . . . . . . . . 9 𝑥abs
25 cncficcgt0.f . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
26 nfmpt1 5274 . . . . . . . . . 10 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
2725, 26nfcxfr 2906 . . . . . . . . 9 𝑥𝐹
2824, 27nfco 5890 . . . . . . . 8 𝑥(abs ∘ 𝐹)
29 nfcv 2908 . . . . . . . 8 𝑥𝑐
3028, 29nffv 6930 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑐)
31 nfcv 2908 . . . . . . 7 𝑥
32 nfcv 2908 . . . . . . . 8 𝑥𝑑
3328, 32nffv 6930 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑑)
3430, 31, 33nfbr 5213 . . . . . 6 𝑥((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3523, 34nfralw 3317 . . . . 5 𝑥𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3622, 35nfan 1898 . . . 4 𝑥((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
37 fveq2 6920 . . . . . . . . 9 (𝑑 = 𝑥 → ((abs ∘ 𝐹)‘𝑑) = ((abs ∘ 𝐹)‘𝑥))
3837breq2d 5178 . . . . . . . 8 (𝑑 = 𝑥 → (((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥)))
3938rspccva 3634 . . . . . . 7 ((∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
4039adantll 713 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
41 absf 15386 . . . . . . . . . . 11 abs:ℂ⟶ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 → abs:ℂ⟶ℝ)
43 difss 4159 . . . . . . . . . . . . 13 (ℝ ∖ {0}) ⊆ ℝ
44 ax-resscn 11241 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 4018 . . . . . . . . . . . 12 (ℝ ∖ {0}) ⊆ ℂ
4645a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
477, 46fssd 6764 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
48 fcompt 7167 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
4942, 47, 48syl2anc 583 . . . . . . . . 9 (𝜑 → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
50 nfcv 2908 . . . . . . . . . . . . 13 𝑥𝑧
5127, 50nffv 6930 . . . . . . . . . . . 12 𝑥(𝐹𝑧)
5224, 51nffv 6930 . . . . . . . . . . 11 𝑥(abs‘(𝐹𝑧))
53 nfcv 2908 . . . . . . . . . . 11 𝑧(abs‘(𝐹𝑥))
54 fveq2 6920 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5554fveq2d 6924 . . . . . . . . . . 11 (𝑧 = 𝑥 → (abs‘(𝐹𝑧)) = (abs‘(𝐹𝑥)))
5652, 53, 55cbvmpt 5277 . . . . . . . . . 10 (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥)))
5756a1i 11 . . . . . . . . 9 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))))
5825a1i 11 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶))
5958, 7feq1dd 45074 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
6059fvmptelcdm 7147 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (ℝ ∖ {0}))
6158, 60fvmpt2d 7042 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = 𝐶)
6261fveq2d 6924 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑥)) = (abs‘𝐶))
6362mpteq2dva 5266 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6449, 57, 633eqtrd 2784 . . . . . . . 8 (𝜑 → (abs ∘ 𝐹) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6545, 60sselid 4006 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
6665abscld 15485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘𝐶) ∈ ℝ)
6764, 66fvmpt2d 7042 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6867ad4ant14 751 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6940, 68breqtrd 5192 . . . . 5 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7069ex 412 . . . 4 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → (𝑥 ∈ (𝐴[,]𝐵) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7136, 70ralrimi 3263 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7230nfeq2 2926 . . . . 5 𝑥 𝑦 = ((abs ∘ 𝐹)‘𝑐)
73 breq1 5169 . . . . 5 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (𝑦 ≤ (abs‘𝐶) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7472, 73ralbid 3279 . . . 4 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7574rspcev 3635 . . 3 ((((abs ∘ 𝐹)‘𝑐) ∈ ℝ+ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
7621, 71, 75syl2anc 583 . 2 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
77 cncficcgt0.a . . . 4 (𝜑𝐴 ∈ ℝ)
78 cncficcgt0.b . . . 4 (𝜑𝐵 ∈ ℝ)
79 cncficcgt0.aleb . . . 4 (𝜑𝐴𝐵)
80 ssidd 4032 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
81 cncfss 24944 . . . . . . 7 (((ℝ ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8246, 80, 81syl2anc 583 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8382, 1sseldd 4009 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
84 abscncf 24946 . . . . . 6 abs ∈ (ℂ–cn→ℝ)
8584a1i 11 . . . . 5 (𝜑 → abs ∈ (ℂ–cn→ℝ))
8683, 85cncfco 24952 . . . 4 (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ))
8777, 78, 79, 86evthicc 25513 . . 3 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑏) ≤ ((abs ∘ 𝐹)‘𝑎) ∧ ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)))
8887simprd 495 . 2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
8976, 88r19.29a 3168 1 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  dom cdm 5700  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  cle 11325  +crp 13057  [,]cicc 13410  abscabs 15283  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923
This theorem is referenced by:  fourierdlem68  46095
  Copyright terms: Public domain W3C validator