Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncficcgt0 Structured version   Visualization version   GIF version

Theorem cncficcgt0 46048
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncficcgt0.f 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
cncficcgt0.a (𝜑𝐴 ∈ ℝ)
cncficcgt0.b (𝜑𝐵 ∈ ℝ)
cncficcgt0.aleb (𝜑𝐴𝐵)
cncficcgt0.fcn (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
Assertion
Ref Expression
cncficcgt0 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem cncficcgt0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncficcgt0.fcn . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
2 cncff 24833 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) → 𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
3 ffun 6662 . . . . . . . 8 (𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}) → Fun 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐹)
54adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
6 simpr 484 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
71, 2syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
87fdmd 6669 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
98eqcomd 2739 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
109adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
116, 10eleqtrd 2835 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ dom 𝐹)
12 fvco 6929 . . . . . 6 ((Fun 𝐹𝑐 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
135, 11, 12syl2anc 584 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹𝑐)))
147ffvelcdmda 7026 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ (ℝ ∖ {0}))
1514eldifad 3910 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℝ)
1615recnd 11151 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ∈ ℂ)
17 eldifsni 4743 . . . . . . 7 ((𝐹𝑐) ∈ (ℝ ∖ {0}) → (𝐹𝑐) ≠ 0)
1814, 17syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐹𝑐) ≠ 0)
1916, 18absrpcld 15365 . . . . 5 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑐)) ∈ ℝ+)
2013, 19eqeltrd 2833 . . . 4 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
2120adantr 480 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ((abs ∘ 𝐹)‘𝑐) ∈ ℝ+)
22 nfv 1915 . . . . 5 𝑥(𝜑𝑐 ∈ (𝐴[,]𝐵))
23 nfcv 2895 . . . . . 6 𝑥(𝐴[,]𝐵)
24 nfcv 2895 . . . . . . . . 9 𝑥abs
25 cncficcgt0.f . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
26 nfmpt1 5194 . . . . . . . . . 10 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)
2725, 26nfcxfr 2893 . . . . . . . . 9 𝑥𝐹
2824, 27nfco 5811 . . . . . . . 8 𝑥(abs ∘ 𝐹)
29 nfcv 2895 . . . . . . . 8 𝑥𝑐
3028, 29nffv 6841 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑐)
31 nfcv 2895 . . . . . . 7 𝑥
32 nfcv 2895 . . . . . . . 8 𝑥𝑑
3328, 32nffv 6841 . . . . . . 7 𝑥((abs ∘ 𝐹)‘𝑑)
3430, 31, 33nfbr 5142 . . . . . 6 𝑥((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3523, 34nfralw 3280 . . . . 5 𝑥𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)
3622, 35nfan 1900 . . . 4 𝑥((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
37 fveq2 6831 . . . . . . . . 9 (𝑑 = 𝑥 → ((abs ∘ 𝐹)‘𝑑) = ((abs ∘ 𝐹)‘𝑥))
3837breq2d 5107 . . . . . . . 8 (𝑑 = 𝑥 → (((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥)))
3938rspccva 3572 . . . . . . 7 ((∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
4039adantll 714 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))
41 absf 15252 . . . . . . . . . . 11 abs:ℂ⟶ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 → abs:ℂ⟶ℝ)
43 difss 4085 . . . . . . . . . . . . 13 (ℝ ∖ {0}) ⊆ ℝ
44 ax-resscn 11074 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 3940 . . . . . . . . . . . 12 (ℝ ∖ {0}) ⊆ ℂ
4645a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
477, 46fssd 6676 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
48 fcompt 7075 . . . . . . . . . 10 ((abs:ℂ⟶ℝ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
4942, 47, 48syl2anc 584 . . . . . . . . 9 (𝜑 → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))))
50 nfcv 2895 . . . . . . . . . . . . 13 𝑥𝑧
5127, 50nffv 6841 . . . . . . . . . . . 12 𝑥(𝐹𝑧)
5224, 51nffv 6841 . . . . . . . . . . 11 𝑥(abs‘(𝐹𝑧))
53 nfcv 2895 . . . . . . . . . . 11 𝑧(abs‘(𝐹𝑥))
54 fveq2 6831 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
5554fveq2d 6835 . . . . . . . . . . 11 (𝑧 = 𝑥 → (abs‘(𝐹𝑧)) = (abs‘(𝐹𝑥)))
5652, 53, 55cbvmpt 5197 . . . . . . . . . 10 (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥)))
5756a1i 11 . . . . . . . . 9 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))))
5825a1i 11 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶))
5958, 7feq1dd 6642 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
6059fvmptelcdm 7055 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (ℝ ∖ {0}))
6158, 60fvmpt2d 6951 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = 𝐶)
6261fveq2d 6835 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑥)) = (abs‘𝐶))
6362mpteq2dva 5188 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6449, 57, 633eqtrd 2772 . . . . . . . 8 (𝜑 → (abs ∘ 𝐹) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶)))
6545, 60sselid 3928 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
6665abscld 15353 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘𝐶) ∈ ℝ)
6764, 66fvmpt2d 6951 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6867ad4ant14 752 . . . . . 6 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶))
6940, 68breqtrd 5121 . . . . 5 ((((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7069ex 412 . . . 4 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → (𝑥 ∈ (𝐴[,]𝐵) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7136, 70ralrimi 3231 . . 3 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))
7230nfeq2 2913 . . . . 5 𝑥 𝑦 = ((abs ∘ 𝐹)‘𝑐)
73 breq1 5098 . . . . 5 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (𝑦 ≤ (abs‘𝐶) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7472, 73ralbid 3246 . . . 4 (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)))
7574rspcev 3573 . . 3 ((((abs ∘ 𝐹)‘𝑐) ∈ ℝ+ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
7621, 71, 75syl2anc 584 . 2 (((𝜑𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
77 cncficcgt0.a . . . 4 (𝜑𝐴 ∈ ℝ)
78 cncficcgt0.b . . . 4 (𝜑𝐵 ∈ ℝ)
79 cncficcgt0.aleb . . . 4 (𝜑𝐴𝐵)
80 ssidd 3954 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
81 cncfss 24839 . . . . . . 7 (((ℝ ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8246, 80, 81syl2anc 584 . . . . . 6 (𝜑 → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
8382, 1sseldd 3931 . . . . 5 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
84 abscncf 24841 . . . . . 6 abs ∈ (ℂ–cn→ℝ)
8584a1i 11 . . . . 5 (𝜑 → abs ∈ (ℂ–cn→ℝ))
8683, 85cncfco 24847 . . . 4 (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ))
8777, 78, 79, 86evthicc 25407 . . 3 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑏) ≤ ((abs ∘ 𝐹)‘𝑎) ∧ ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)))
8887simprd 495 . 2 (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))
8976, 88r19.29a 3141 1 (𝜑 → ∃𝑦 ∈ ℝ+𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  wss 3898  {csn 4577   class class class wbr 5095  cmpt 5176  dom cdm 5621  ccom 5625  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  cle 11158  +crp 12896  [,]cicc 13255  abscabs 15148  cnccncf 24816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-icc 13259  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cn 23162  df-cnp 23163  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818
This theorem is referenced by:  fourierdlem68  46334
  Copyright terms: Public domain W3C validator