| Step | Hyp | Ref
| Expression |
| 1 | | cncficcgt0.fcn |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0}))) |
| 2 | | cncff 24919 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) → 𝐹:(𝐴[,]𝐵)⟶(ℝ ∖
{0})) |
| 3 | | ffun 6739 |
. . . . . . . 8
⊢ (𝐹:(𝐴[,]𝐵)⟶(ℝ ∖ {0}) → Fun
𝐹) |
| 4 | 1, 2, 3 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐹) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → Fun 𝐹) |
| 6 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ (𝐴[,]𝐵)) |
| 7 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶(ℝ ∖
{0})) |
| 8 | 7 | fdmd 6746 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = (𝐴[,]𝐵)) |
| 9 | 8 | eqcomd 2743 |
. . . . . . . 8
⊢ (𝜑 → (𝐴[,]𝐵) = dom 𝐹) |
| 10 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) |
| 11 | 6, 10 | eleqtrd 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → 𝑐 ∈ dom 𝐹) |
| 12 | | fvco 7007 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝑐 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹‘𝑐))) |
| 13 | 5, 11, 12 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) = (abs‘(𝐹‘𝑐))) |
| 14 | 7 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑐) ∈ (ℝ ∖
{0})) |
| 15 | 14 | eldifad 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑐) ∈ ℝ) |
| 16 | 15 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑐) ∈ ℂ) |
| 17 | | eldifsni 4790 |
. . . . . . 7
⊢ ((𝐹‘𝑐) ∈ (ℝ ∖ {0}) → (𝐹‘𝑐) ≠ 0) |
| 18 | 14, 17 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑐) ≠ 0) |
| 19 | 16, 18 | absrpcld 15487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹‘𝑐)) ∈
ℝ+) |
| 20 | 13, 19 | eqeltrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ∈
ℝ+) |
| 21 | 20 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ((abs ∘ 𝐹)‘𝑐) ∈
ℝ+) |
| 22 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) |
| 23 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑥(𝐴[,]𝐵) |
| 24 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥abs |
| 25 | | cncficcgt0.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) |
| 26 | | nfmpt1 5250 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) |
| 27 | 25, 26 | nfcxfr 2903 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 |
| 28 | 24, 27 | nfco 5876 |
. . . . . . . 8
⊢
Ⅎ𝑥(abs
∘ 𝐹) |
| 29 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑐 |
| 30 | 28, 29 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑥((abs
∘ 𝐹)‘𝑐) |
| 31 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑥
≤ |
| 32 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑑 |
| 33 | 28, 32 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑥((abs
∘ 𝐹)‘𝑑) |
| 34 | 30, 31, 33 | nfbr 5190 |
. . . . . 6
⊢
Ⅎ𝑥((abs
∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) |
| 35 | 23, 34 | nfralw 3311 |
. . . . 5
⊢
Ⅎ𝑥∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) |
| 36 | 22, 35 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) |
| 37 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑑 = 𝑥 → ((abs ∘ 𝐹)‘𝑑) = ((abs ∘ 𝐹)‘𝑥)) |
| 38 | 37 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑑 = 𝑥 → (((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥))) |
| 39 | 38 | rspccva 3621 |
. . . . . . 7
⊢
((∀𝑑 ∈
(𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥)) |
| 40 | 39 | adantll 714 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑥)) |
| 41 | | absf 15376 |
. . . . . . . . . . 11
⊢
abs:ℂ⟶ℝ |
| 42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
| 43 | | difss 4136 |
. . . . . . . . . . . . 13
⊢ (ℝ
∖ {0}) ⊆ ℝ |
| 44 | | ax-resscn 11212 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
| 45 | 43, 44 | sstri 3993 |
. . . . . . . . . . . 12
⊢ (ℝ
∖ {0}) ⊆ ℂ |
| 46 | 45 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ ∖ {0})
⊆ ℂ) |
| 47 | 7, 46 | fssd 6753 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 48 | | fcompt 7153 |
. . . . . . . . . 10
⊢
((abs:ℂ⟶ℝ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑧)))) |
| 49 | 42, 47, 48 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (abs ∘ 𝐹) = (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑧)))) |
| 50 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑧 |
| 51 | 27, 50 | nffv 6916 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝐹‘𝑧) |
| 52 | 24, 51 | nffv 6916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(abs‘(𝐹‘𝑧)) |
| 53 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(abs‘(𝐹‘𝑥)) |
| 54 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
| 55 | 54 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (abs‘(𝐹‘𝑧)) = (abs‘(𝐹‘𝑥))) |
| 56 | 52, 53, 55 | cbvmpt 5253 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑥))) |
| 57 | 56 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑧))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑥)))) |
| 58 | 25 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶)) |
| 59 | 58, 7 | feq1dd 6721 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶):(𝐴[,]𝐵)⟶(ℝ ∖
{0})) |
| 60 | 59 | fvmptelcdm 7133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (ℝ ∖
{0})) |
| 61 | 58, 60 | fvmpt2d 7029 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) = 𝐶) |
| 62 | 61 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹‘𝑥)) = (abs‘𝐶)) |
| 63 | 62 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘(𝐹‘𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶))) |
| 64 | 49, 57, 63 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → (abs ∘ 𝐹) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (abs‘𝐶))) |
| 65 | 45, 60 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
| 66 | 65 | abscld 15475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘𝐶) ∈ ℝ) |
| 67 | 64, 66 | fvmpt2d 7029 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶)) |
| 68 | 67 | ad4ant14 752 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘𝐶)) |
| 69 | 40, 68 | breqtrd 5169 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) |
| 70 | 69 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → (𝑥 ∈ (𝐴[,]𝐵) → ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))) |
| 71 | 36, 70 | ralrimi 3257 |
. . 3
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) |
| 72 | 30 | nfeq2 2923 |
. . . . 5
⊢
Ⅎ𝑥 𝑦 = ((abs ∘ 𝐹)‘𝑐) |
| 73 | | breq1 5146 |
. . . . 5
⊢ (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (𝑦 ≤ (abs‘𝐶) ↔ ((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))) |
| 74 | 72, 73 | ralbid 3273 |
. . . 4
⊢ (𝑦 = ((abs ∘ 𝐹)‘𝑐) → (∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶))) |
| 75 | 74 | rspcev 3622 |
. . 3
⊢ ((((abs
∘ 𝐹)‘𝑐) ∈ ℝ+
∧ ∀𝑥 ∈
(𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ (abs‘𝐶)) → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶)) |
| 76 | 21, 71, 75 | syl2anc 584 |
. 2
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐴[,]𝐵)) ∧ ∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶)) |
| 77 | | cncficcgt0.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 78 | | cncficcgt0.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 79 | | cncficcgt0.aleb |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 80 | | ssidd 4007 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 81 | | cncfss 24925 |
. . . . . . 7
⊢
(((ℝ ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ)
→ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) |
| 82 | 46, 80, 81 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) |
| 83 | 82, 1 | sseldd 3984 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 84 | | abscncf 24927 |
. . . . . 6
⊢ abs
∈ (ℂ–cn→ℝ) |
| 85 | 84 | a1i 11 |
. . . . 5
⊢ (𝜑 → abs ∈
(ℂ–cn→ℝ)) |
| 86 | 83, 85 | cncfco 24933 |
. . . 4
⊢ (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 87 | 77, 78, 79, 86 | evthicc 25494 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑏 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑏) ≤ ((abs ∘ 𝐹)‘𝑎) ∧ ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑))) |
| 88 | 87 | simprd 495 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)∀𝑑 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑐) ≤ ((abs ∘ 𝐹)‘𝑑)) |
| 89 | 76, 88 | r19.29a 3162 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶)) |