Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubsticclem Structured version   Visualization version   GIF version

Theorem itgsubsticclem 45980
Description: lemma for itgsubsticc 45981. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsubsticclem.1 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
itgsubsticclem.2 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
itgsubsticclem.3 (𝜑𝑋 ∈ ℝ)
itgsubsticclem.4 (𝜑𝑌 ∈ ℝ)
itgsubsticclem.5 (𝜑𝑋𝑌)
itgsubsticclem.6 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
itgsubsticclem.7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubsticclem.8 (𝜑𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ))
itgsubsticclem.9 (𝜑𝐾 ∈ ℝ)
itgsubsticclem.10 (𝜑𝐿 ∈ ℝ)
itgsubsticclem.11 (𝜑𝐾𝐿)
itgsubsticclem.12 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubsticclem.13 (𝑢 = 𝐴𝐶 = 𝐸)
itgsubsticclem.14 (𝑥 = 𝑋𝐴 = 𝐾)
itgsubsticclem.15 (𝑥 = 𝑌𝐴 = 𝐿)
Assertion
Ref Expression
itgsubsticclem (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐸   𝑥,𝐺   𝑢,𝐾,𝑥   𝑢,𝐿,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝜑,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑥,𝑢)   𝐸(𝑥)   𝐹(𝑥,𝑢)   𝐺(𝑢)

Proof of Theorem itgsubsticclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑢 = 𝑤 → (𝐺𝑢) = (𝐺𝑤))
2 nfcv 2892 . . . 4 𝑤(𝐺𝑢)
3 itgsubsticclem.2 . . . . . 6 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
4 nfmpt1 5209 . . . . . 6 𝑢(𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
53, 4nfcxfr 2890 . . . . 5 𝑢𝐺
6 nfcv 2892 . . . . 5 𝑢𝑤
75, 6nffv 6871 . . . 4 𝑢(𝐺𝑤)
81, 2, 7cbvditg 25762 . . 3 ⨜[𝐾𝐿](𝐺𝑢) d𝑢 = ⨜[𝐾𝐿](𝐺𝑤) d𝑤
9 itgsubsticclem.11 . . . 4 (𝜑𝐾𝐿)
10 itgsubsticclem.9 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
11 itgsubsticclem.10 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
1210, 11iccssred 13402 . . . . . . . 8 (𝜑 → (𝐾[,]𝐿) ⊆ ℝ)
1312adantr 480 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐾[,]𝐿) ⊆ ℝ)
14 ioossicc 13401 . . . . . . . . 9 (𝐾(,)𝐿) ⊆ (𝐾[,]𝐿)
1514sseli 3945 . . . . . . . 8 (𝑢 ∈ (𝐾(,)𝐿) → 𝑢 ∈ (𝐾[,]𝐿))
1615adantl 481 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → 𝑢 ∈ (𝐾[,]𝐿))
1713, 16sseldd 3950 . . . . . 6 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → 𝑢 ∈ ℝ)
1816iftrued 4499 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) = (𝐹𝑢))
19 itgsubsticclem.1 . . . . . . . . . . . . 13 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
2019a1i 11 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶))
21 itgsubsticclem.8 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ))
22 cncff 24793 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ) → 𝐹:(𝐾[,]𝐿)⟶ℂ)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐾[,]𝐿)⟶ℂ)
2420, 23feq1dd 6674 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶):(𝐾[,]𝐿)⟶ℂ)
2524fvmptelcdm 7088 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐾[,]𝐿)) → 𝐶 ∈ ℂ)
2616, 25syldan 591 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → 𝐶 ∈ ℂ)
2719fvmpt2 6982 . . . . . . . . 9 ((𝑢 ∈ (𝐾[,]𝐿) ∧ 𝐶 ∈ ℂ) → (𝐹𝑢) = 𝐶)
2816, 26, 27syl2anc 584 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐹𝑢) = 𝐶)
2928, 26eqeltrd 2829 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐹𝑢) ∈ ℂ)
3018, 29eqeltrd 2829 . . . . . 6 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) ∈ ℂ)
313fvmpt2 6982 . . . . . 6 ((𝑢 ∈ ℝ ∧ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) ∈ ℂ) → (𝐺𝑢) = if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
3217, 30, 31syl2anc 584 . . . . 5 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐺𝑢) = if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
3332, 18, 283eqtrd 2769 . . . 4 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐺𝑢) = 𝐶)
349, 33ditgeq3d 45969 . . 3 (𝜑 → ⨜[𝐾𝐿](𝐺𝑢) d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
35 itgsubsticclem.3 . . . 4 (𝜑𝑋 ∈ ℝ)
36 itgsubsticclem.4 . . . 4 (𝜑𝑌 ∈ ℝ)
37 itgsubsticclem.5 . . . 4 (𝜑𝑋𝑌)
38 mnfxr 11238 . . . . 5 -∞ ∈ ℝ*
3938a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
40 pnfxr 11235 . . . . 5 +∞ ∈ ℝ*
4140a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
42 ioomax 13390 . . . . . . . . 9 (-∞(,)+∞) = ℝ
4342eqcomi 2739 . . . . . . . 8 ℝ = (-∞(,)+∞)
4443a1i 11 . . . . . . 7 (𝜑 → ℝ = (-∞(,)+∞))
4512, 44sseqtrd 3986 . . . . . 6 (𝜑 → (𝐾[,]𝐿) ⊆ (-∞(,)+∞))
46 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
4744, 46eqsstrrdi 3995 . . . . . 6 (𝜑 → (-∞(,)+∞) ⊆ ℂ)
48 cncfss 24799 . . . . . 6 (((𝐾[,]𝐿) ⊆ (-∞(,)+∞) ∧ (-∞(,)+∞) ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) ⊆ ((𝑋[,]𝑌)–cn→(-∞(,)+∞)))
4945, 47, 48syl2anc 584 . . . . 5 (𝜑 → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) ⊆ ((𝑋[,]𝑌)–cn→(-∞(,)+∞)))
50 itgsubsticclem.6 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
5149, 50sseldd 3950 . . . 4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(-∞(,)+∞)))
52 itgsubsticclem.7 . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
53 nfmpt1 5209 . . . . . . . . . . 11 𝑢(𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
5419, 53nfcxfr 2890 . . . . . . . . . 10 𝑢𝐹
55 eqid 2730 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
56 eqid 2730 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
57 eqid 2730 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5857cnfldtop 24678 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
5958a1i 11 . . . . . . . . . 10 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
6012, 46sstrdi 3962 . . . . . . . . . . . . 13 (𝜑 → (𝐾[,]𝐿) ⊆ ℂ)
61 ssid 3972 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
62 eqid 2730 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))
63 unicntop 24680 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
6463restid 17403 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
6558, 64ax-mp 5 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
6665eqcomi 2739 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
6757, 62, 66cncfcn 24810 . . . . . . . . . . . . 13 (((𝐾[,]𝐿) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐾[,]𝐿)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
6860, 61, 67sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐾[,]𝐿)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
69 reex 11166 . . . . . . . . . . . . . . . 16 ℝ ∈ V
7069a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ∈ V)
71 restabs 23059 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐾[,]𝐿) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)))
7259, 12, 70, 71syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)))
73 tgioo4 24700 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7473eqcomi 2739 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
7675oveq1d 7405 . . . . . . . . . . . . . 14 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐾[,]𝐿)) = ((topGen‘ran (,)) ↾t (𝐾[,]𝐿)))
7772, 76eqtr3d 2767 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) = ((topGen‘ran (,)) ↾t (𝐾[,]𝐿)))
7877oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
7968, 78eqtrd 2765 . . . . . . . . . . 11 (𝜑 → ((𝐾[,]𝐿)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
8021, 79eleqtrd 2831 . . . . . . . . . 10 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
8154, 55, 56, 3, 10, 11, 9, 59, 80icccncfext 45892 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) ∧ (𝐺 ↾ (𝐾[,]𝐿)) = 𝐹))
8281simpld 494 . . . . . . . 8 (𝜑𝐺 ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)))
83 uniretop 24657 . . . . . . . . 9 ℝ = (topGen‘ran (,))
84 eqid 2730 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t ran 𝐹) = ((TopOpen‘ℂfld) ↾t ran 𝐹)
8583, 84cnf 23140 . . . . . . . 8 (𝐺 ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) → 𝐺:ℝ⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹))
8682, 85syl 17 . . . . . . 7 (𝜑𝐺:ℝ⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹))
8744feq2d 6675 . . . . . . 7 (𝜑 → (𝐺:ℝ⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹) ↔ 𝐺:(-∞(,)+∞)⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹)))
8886, 87mpbid 232 . . . . . 6 (𝜑𝐺:(-∞(,)+∞)⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹))
8988feqmptd 6932 . . . . 5 (𝜑𝐺 = (𝑤 ∈ (-∞(,)+∞) ↦ (𝐺𝑤)))
9023frnd 6699 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℂ)
91 cncfss 24799 . . . . . . 7 ((ran 𝐹 ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-∞(,)+∞)–cn→ran 𝐹) ⊆ ((-∞(,)+∞)–cn→ℂ))
9290, 61, 91sylancl 586 . . . . . 6 (𝜑 → ((-∞(,)+∞)–cn→ran 𝐹) ⊆ ((-∞(,)+∞)–cn→ℂ))
9343oveq2i 7401 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t (-∞(,)+∞))
9473, 93eqtri 2753 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t (-∞(,)+∞))
95 eqid 2730 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ran 𝐹) = ((TopOpen‘ℂfld) ↾t ran 𝐹)
9657, 94, 95cncfcn 24810 . . . . . . . . 9 (((-∞(,)+∞) ⊆ ℂ ∧ ran 𝐹 ⊆ ℂ) → ((-∞(,)+∞)–cn→ran 𝐹) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)))
9747, 90, 96syl2anc 584 . . . . . . . 8 (𝜑 → ((-∞(,)+∞)–cn→ran 𝐹) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)))
9897eqcomd 2736 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) = ((-∞(,)+∞)–cn→ran 𝐹))
9982, 98eleqtrd 2831 . . . . . 6 (𝜑𝐺 ∈ ((-∞(,)+∞)–cn→ran 𝐹))
10092, 99sseldd 3950 . . . . 5 (𝜑𝐺 ∈ ((-∞(,)+∞)–cn→ℂ))
10189, 100eqeltrrd 2830 . . . 4 (𝜑 → (𝑤 ∈ (-∞(,)+∞) ↦ (𝐺𝑤)) ∈ ((-∞(,)+∞)–cn→ℂ))
102 itgsubsticclem.12 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
103 fveq2 6861 . . . 4 (𝑤 = 𝐴 → (𝐺𝑤) = (𝐺𝐴))
104 itgsubsticclem.14 . . . 4 (𝑥 = 𝑋𝐴 = 𝐾)
105 itgsubsticclem.15 . . . 4 (𝑥 = 𝑌𝐴 = 𝐿)
10635, 36, 37, 39, 41, 51, 52, 101, 102, 103, 104, 105itgsubst 25963 . . 3 (𝜑 → ⨜[𝐾𝐿](𝐺𝑤) d𝑤 = ⨜[𝑋𝑌]((𝐺𝐴) · 𝐵) d𝑥)
1078, 34, 1063eqtr3a 2789 . 2 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌]((𝐺𝐴) · 𝐵) d𝑥)
1083a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿)))))
109 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝑢 = 𝐴)
11057cnfldtopon 24677 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11135, 36iccssred 13402 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
112111, 46sstrdi 3962 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ⊆ ℂ)
113 resttopon 23055 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝑋[,]𝑌) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)))
114110, 112, 113sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)))
115 resttopon 23055 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐾[,]𝐿) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)))
116110, 60, 115sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)))
117 eqid 2730 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) = ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌))
11857, 117, 62cncfcn 24810 . . . . . . . . . . . . . . 15 (((𝑋[,]𝑌) ⊆ ℂ ∧ (𝐾[,]𝐿) ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) = (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))))
119112, 60, 118syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) = (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))))
12050, 119eleqtrd 2831 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))))
121 cnf2 23143 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)) ∧ ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)) ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
122114, 116, 120, 121syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
123122adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
124 eqid 2730 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)
125124fmpt 7085 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿) ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
126123, 125sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿))
127 ioossicc 13401 . . . . . . . . . . . 12 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
128127sseli 3945 . . . . . . . . . . 11 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
129128adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋[,]𝑌))
130 rsp 3226 . . . . . . . . . 10 (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿) → (𝑥 ∈ (𝑋[,]𝑌) → 𝐴 ∈ (𝐾[,]𝐿)))
131126, 129, 130sylc 65 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝐾[,]𝐿))
132131adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐴 ∈ (𝐾[,]𝐿))
133109, 132eqeltrd 2829 . . . . . . 7 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝑢 ∈ (𝐾[,]𝐿))
134133iftrued 4499 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) = (𝐹𝑢))
135 simpll 766 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝜑)
136135, 133, 25syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐶 ∈ ℂ)
137133, 136, 27syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → (𝐹𝑢) = 𝐶)
138 itgsubsticclem.13 . . . . . . 7 (𝑢 = 𝐴𝐶 = 𝐸)
139138adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐶 = 𝐸)
140134, 137, 1393eqtrd 2769 . . . . 5 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) = 𝐸)
14112adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐾[,]𝐿) ⊆ ℝ)
142141, 131sseldd 3950 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℝ)
143 elex 3471 . . . . . . . 8 (𝐴 ∈ (𝐾[,]𝐿) → 𝐴 ∈ V)
144131, 143syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ V)
145 isset 3464 . . . . . . 7 (𝐴 ∈ V ↔ ∃𝑢 𝑢 = 𝐴)
146144, 145sylib 218 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ∃𝑢 𝑢 = 𝐴)
147139, 136eqeltrrd 2830 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐸 ∈ ℂ)
148146, 147exlimddv 1935 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℂ)
149108, 140, 142, 148fvmptd 6978 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐺𝐴) = 𝐸)
150149oveq1d 7405 . . 3 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝐺𝐴) · 𝐵) = (𝐸 · 𝐵))
15137, 150ditgeq3d 45969 . 2 (𝜑 → ⨜[𝑋𝑌]((𝐺𝐴) · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
152107, 151eqtrd 2765 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917  ifcif 4491   cuni 4874   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  [,]cicc 13316  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  TopOnctopon 22804   Cn ccn 23118  cnccncf 24776  𝐿1cibl 25525  cdit 25754   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-ditg 25755  df-limc 25774  df-dv 25775
This theorem is referenced by:  itgsubsticc  45981
  Copyright terms: Public domain W3C validator