Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . 4
⊢ (𝑢 = 𝑤 → (𝐺‘𝑢) = (𝐺‘𝑤)) |
2 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑤(𝐺‘𝑢) |
3 | | itgsubsticclem.2 |
. . . . . 6
⊢ 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) |
4 | | nfmpt1 5182 |
. . . . . 6
⊢
Ⅎ𝑢(𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) |
5 | 3, 4 | nfcxfr 2905 |
. . . . 5
⊢
Ⅎ𝑢𝐺 |
6 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑢𝑤 |
7 | 5, 6 | nffv 6784 |
. . . 4
⊢
Ⅎ𝑢(𝐺‘𝑤) |
8 | 1, 2, 7 | cbvditg 25018 |
. . 3
⊢
⨜[𝐾 →
𝐿](𝐺‘𝑢) d𝑢 = ⨜[𝐾 → 𝐿](𝐺‘𝑤) d𝑤 |
9 | | itgsubsticclem.11 |
. . . 4
⊢ (𝜑 → 𝐾 ≤ 𝐿) |
10 | | itgsubsticclem.9 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℝ) |
11 | | itgsubsticclem.10 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ ℝ) |
12 | 10, 11 | iccssred 13166 |
. . . . . . . 8
⊢ (𝜑 → (𝐾[,]𝐿) ⊆ ℝ) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → (𝐾[,]𝐿) ⊆ ℝ) |
14 | | ioossicc 13165 |
. . . . . . . . 9
⊢ (𝐾(,)𝐿) ⊆ (𝐾[,]𝐿) |
15 | 14 | sseli 3917 |
. . . . . . . 8
⊢ (𝑢 ∈ (𝐾(,)𝐿) → 𝑢 ∈ (𝐾[,]𝐿)) |
16 | 15 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → 𝑢 ∈ (𝐾[,]𝐿)) |
17 | 13, 16 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → 𝑢 ∈ ℝ) |
18 | 16 | iftrued 4467 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿))) = (𝐹‘𝑢)) |
19 | | itgsubsticclem.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) |
20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)) |
21 | | itgsubsticclem.8 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ)) |
22 | | cncff 24056 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ) → 𝐹:(𝐾[,]𝐿)⟶ℂ) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(𝐾[,]𝐿)⟶ℂ) |
24 | 20, 23 | feq1dd 42703 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶):(𝐾[,]𝐿)⟶ℂ) |
25 | 24 | fvmptelrn 6987 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾[,]𝐿)) → 𝐶 ∈ ℂ) |
26 | 16, 25 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → 𝐶 ∈ ℂ) |
27 | 19 | fvmpt2 6886 |
. . . . . . . . 9
⊢ ((𝑢 ∈ (𝐾[,]𝐿) ∧ 𝐶 ∈ ℂ) → (𝐹‘𝑢) = 𝐶) |
28 | 16, 26, 27 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → (𝐹‘𝑢) = 𝐶) |
29 | 28, 26 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → (𝐹‘𝑢) ∈ ℂ) |
30 | 18, 29 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿))) ∈ ℂ) |
31 | 3 | fvmpt2 6886 |
. . . . . 6
⊢ ((𝑢 ∈ ℝ ∧ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿))) ∈ ℂ) → (𝐺‘𝑢) = if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) |
32 | 17, 30, 31 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → (𝐺‘𝑢) = if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) |
33 | 32, 18, 28 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐾(,)𝐿)) → (𝐺‘𝑢) = 𝐶) |
34 | 9, 33 | ditgeq3d 43505 |
. . 3
⊢ (𝜑 → ⨜[𝐾 → 𝐿](𝐺‘𝑢) d𝑢 = ⨜[𝐾 → 𝐿]𝐶 d𝑢) |
35 | | itgsubsticclem.3 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ℝ) |
36 | | itgsubsticclem.4 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℝ) |
37 | | itgsubsticclem.5 |
. . . 4
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
38 | | mnfxr 11032 |
. . . . 5
⊢ -∞
∈ ℝ* |
39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 → -∞ ∈
ℝ*) |
40 | | pnfxr 11029 |
. . . . 5
⊢ +∞
∈ ℝ* |
41 | 40 | a1i 11 |
. . . 4
⊢ (𝜑 → +∞ ∈
ℝ*) |
42 | | ioomax 13154 |
. . . . . . . . 9
⊢
(-∞(,)+∞) = ℝ |
43 | 42 | eqcomi 2747 |
. . . . . . . 8
⊢ ℝ =
(-∞(,)+∞) |
44 | 43 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ =
(-∞(,)+∞)) |
45 | 12, 44 | sseqtrd 3961 |
. . . . . 6
⊢ (𝜑 → (𝐾[,]𝐿) ⊆
(-∞(,)+∞)) |
46 | | ax-resscn 10928 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
47 | 44, 46 | eqsstrrdi 3976 |
. . . . . 6
⊢ (𝜑 → (-∞(,)+∞)
⊆ ℂ) |
48 | | cncfss 24062 |
. . . . . 6
⊢ (((𝐾[,]𝐿) ⊆ (-∞(,)+∞) ∧
(-∞(,)+∞) ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) ⊆ ((𝑋[,]𝑌)–cn→(-∞(,)+∞))) |
49 | 45, 47, 48 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) ⊆ ((𝑋[,]𝑌)–cn→(-∞(,)+∞))) |
50 | | itgsubsticclem.6 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) |
51 | 49, 50 | sseldd 3922 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(-∞(,)+∞))) |
52 | | itgsubsticclem.7 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩
𝐿1)) |
53 | | nfmpt1 5182 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢(𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) |
54 | 19, 53 | nfcxfr 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑢𝐹 |
55 | | eqid 2738 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
56 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ (TopOpen‘ℂfld) = ∪ (TopOpen‘ℂfld) |
57 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
58 | 57 | cnfldtop 23947 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) ∈ Top |
59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈ Top) |
60 | 12, 46 | sstrdi 3933 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾[,]𝐿) ⊆ ℂ) |
61 | | ssid 3943 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
62 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿)) |
63 | | unicntop 23949 |
. . . . . . . . . . . . . . . . 17
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
64 | 63 | restid 17144 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
65 | 58, 64 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
66 | 65 | eqcomi 2747 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
67 | 57, 62, 66 | cncfcn 24073 |
. . . . . . . . . . . . 13
⊢ (((𝐾[,]𝐿) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((𝐾[,]𝐿)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn
(TopOpen‘ℂfld))) |
68 | 60, 61, 67 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐾[,]𝐿)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn
(TopOpen‘ℂfld))) |
69 | | reex 10962 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ℝ ∈
V) |
71 | | restabs 22316 |
. . . . . . . . . . . . . . 15
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐾[,]𝐿) ⊆ ℝ ∧ ℝ ∈ V)
→ (((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿))) |
72 | 59, 12, 70, 71 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿))) |
73 | 57 | tgioo2 23966 |
. . . . . . . . . . . . . . . . 17
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
74 | 73 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ↾t ℝ) =
(topGen‘ran (,)) |
75 | 74 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t ℝ) =
(topGen‘ran (,))) |
76 | 75 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐾[,]𝐿)) = ((topGen‘ran (,))
↾t (𝐾[,]𝐿))) |
77 | 72, 76 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) = ((topGen‘ran (,))
↾t (𝐾[,]𝐿))) |
78 | 77 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld))
= (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn
(TopOpen‘ℂfld))) |
79 | 68, 78 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾[,]𝐿)–cn→ℂ) = (((topGen‘ran (,))
↾t (𝐾[,]𝐿)) Cn
(TopOpen‘ℂfld))) |
80 | 21, 79 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,))
↾t (𝐾[,]𝐿)) Cn
(TopOpen‘ℂfld))) |
81 | 54, 55, 56, 3, 10, 11, 9, 59, 80 | icccncfext 43428 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ∈ ((topGen‘ran (,)) Cn
((TopOpen‘ℂfld) ↾t ran 𝐹)) ∧ (𝐺 ↾ (𝐾[,]𝐿)) = 𝐹)) |
82 | 81 | simpld 495 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ((topGen‘ran (,)) Cn
((TopOpen‘ℂfld) ↾t ran 𝐹))) |
83 | | uniretop 23926 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
84 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ ((TopOpen‘ℂfld)
↾t ran 𝐹)
= ∪ ((TopOpen‘ℂfld)
↾t ran 𝐹) |
85 | 83, 84 | cnf 22397 |
. . . . . . . 8
⊢ (𝐺 ∈ ((topGen‘ran (,))
Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) → 𝐺:ℝ⟶∪
((TopOpen‘ℂfld) ↾t ran 𝐹)) |
86 | 82, 85 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:ℝ⟶∪
((TopOpen‘ℂfld) ↾t ran 𝐹)) |
87 | 44 | feq2d 6586 |
. . . . . . 7
⊢ (𝜑 → (𝐺:ℝ⟶∪
((TopOpen‘ℂfld) ↾t ran 𝐹) ↔ 𝐺:(-∞(,)+∞)⟶∪ ((TopOpen‘ℂfld)
↾t ran 𝐹))) |
88 | 86, 87 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → 𝐺:(-∞(,)+∞)⟶∪ ((TopOpen‘ℂfld)
↾t ran 𝐹)) |
89 | 88 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑤 ∈ (-∞(,)+∞) ↦ (𝐺‘𝑤))) |
90 | 23 | frnd 6608 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ ℂ) |
91 | | cncfss 24062 |
. . . . . . 7
⊢ ((ran
𝐹 ⊆ ℂ ∧
ℂ ⊆ ℂ) → ((-∞(,)+∞)–cn→ran 𝐹) ⊆ ((-∞(,)+∞)–cn→ℂ)) |
92 | 90, 61, 91 | sylancl 586 |
. . . . . 6
⊢ (𝜑 →
((-∞(,)+∞)–cn→ran
𝐹) ⊆
((-∞(,)+∞)–cn→ℂ)) |
93 | 43 | oveq2i 7286 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t ℝ) =
((TopOpen‘ℂfld) ↾t
(-∞(,)+∞)) |
94 | 73, 93 | eqtri 2766 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t (-∞(,)+∞)) |
95 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t ran 𝐹) =
((TopOpen‘ℂfld) ↾t ran 𝐹) |
96 | 57, 94, 95 | cncfcn 24073 |
. . . . . . . . 9
⊢
(((-∞(,)+∞) ⊆ ℂ ∧ ran 𝐹 ⊆ ℂ) →
((-∞(,)+∞)–cn→ran
𝐹) = ((topGen‘ran
(,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹))) |
97 | 47, 90, 96 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((-∞(,)+∞)–cn→ran
𝐹) = ((topGen‘ran
(,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹))) |
98 | 97 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → ((topGen‘ran (,)) Cn
((TopOpen‘ℂfld) ↾t ran 𝐹)) =
((-∞(,)+∞)–cn→ran
𝐹)) |
99 | 82, 98 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ ((-∞(,)+∞)–cn→ran 𝐹)) |
100 | 92, 99 | sseldd 3922 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ ((-∞(,)+∞)–cn→ℂ)) |
101 | 89, 100 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ (-∞(,)+∞) ↦ (𝐺‘𝑤)) ∈ ((-∞(,)+∞)–cn→ℂ)) |
102 | | itgsubsticclem.12 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
103 | | fveq2 6774 |
. . . 4
⊢ (𝑤 = 𝐴 → (𝐺‘𝑤) = (𝐺‘𝐴)) |
104 | | itgsubsticclem.14 |
. . . 4
⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) |
105 | | itgsubsticclem.15 |
. . . 4
⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) |
106 | 35, 36, 37, 39, 41, 51, 52, 101, 102, 103, 104, 105 | itgsubst 25213 |
. . 3
⊢ (𝜑 → ⨜[𝐾 → 𝐿](𝐺‘𝑤) d𝑤 = ⨜[𝑋 → 𝑌]((𝐺‘𝐴) · 𝐵) d𝑥) |
107 | 8, 34, 106 | 3eqtr3a 2802 |
. 2
⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌]((𝐺‘𝐴) · 𝐵) d𝑥) |
108 | 3 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿))))) |
109 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝑢 = 𝐴) |
110 | 57 | cnfldtopon 23946 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
111 | 35, 36 | iccssred 13166 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋[,]𝑌) ⊆ ℝ) |
112 | 111, 46 | sstrdi 3933 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋[,]𝑌) ⊆ ℂ) |
113 | | resttopon 22312 |
. . . . . . . . . . . . . 14
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (𝑋[,]𝑌) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌))) |
114 | 110, 112,
113 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌))) |
115 | | resttopon 22312 |
. . . . . . . . . . . . . 14
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (𝐾[,]𝐿) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿))) |
116 | 110, 60, 115 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿))) |
117 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) = ((TopOpen‘ℂfld)
↾t (𝑋[,]𝑌)) |
118 | 57, 117, 62 | cncfcn 24073 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋[,]𝑌) ⊆ ℂ ∧ (𝐾[,]𝐿) ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) = (((TopOpen‘ℂfld)
↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿)))) |
119 | 112, 60, 118 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) = (((TopOpen‘ℂfld)
↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿)))) |
120 | 50, 119 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈
(((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿)))) |
121 | | cnf2 22400 |
. . . . . . . . . . . . 13
⊢
((((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)) ∧
((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)) ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈
(((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld)
↾t (𝐾[,]𝐿)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
122 | 114, 116,
120, 121 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
123 | 122 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
124 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) |
125 | 124 | fmpt 6984 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿) ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
126 | 123, 125 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿)) |
127 | | ioossicc 13165 |
. . . . . . . . . . . 12
⊢ (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) |
128 | 127 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌)) |
129 | 128 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋[,]𝑌)) |
130 | | rsp 3131 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
(𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿) → (𝑥 ∈ (𝑋[,]𝑌) → 𝐴 ∈ (𝐾[,]𝐿))) |
131 | 126, 129,
130 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝐾[,]𝐿)) |
132 | 131 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐴 ∈ (𝐾[,]𝐿)) |
133 | 109, 132 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝑢 ∈ (𝐾[,]𝐿)) |
134 | 133 | iftrued 4467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿))) = (𝐹‘𝑢)) |
135 | | simpll 764 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝜑) |
136 | 135, 133,
25 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐶 ∈ ℂ) |
137 | 133, 136,
27 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → (𝐹‘𝑢) = 𝐶) |
138 | | itgsubsticclem.13 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) |
139 | 138 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐶 = 𝐸) |
140 | 134, 137,
139 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿))) = 𝐸) |
141 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐾[,]𝐿) ⊆ ℝ) |
142 | 141, 131 | sseldd 3922 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℝ) |
143 | | elex 3450 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐾[,]𝐿) → 𝐴 ∈ V) |
144 | 131, 143 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ V) |
145 | | isset 3445 |
. . . . . . 7
⊢ (𝐴 ∈ V ↔ ∃𝑢 𝑢 = 𝐴) |
146 | 144, 145 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ∃𝑢 𝑢 = 𝐴) |
147 | 139, 136 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐸 ∈ ℂ) |
148 | 146, 147 | exlimddv 1938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℂ) |
149 | 108, 140,
142, 148 | fvmptd 6882 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (𝐺‘𝐴) = 𝐸) |
150 | 149 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝐺‘𝐴) · 𝐵) = (𝐸 · 𝐵)) |
151 | 37, 150 | ditgeq3d 43505 |
. 2
⊢ (𝜑 → ⨜[𝑋 → 𝑌]((𝐺‘𝐴) · 𝐵) d𝑥 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
152 | 107, 151 | eqtrd 2778 |
1
⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |