Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubsticclem Structured version   Visualization version   GIF version

Theorem itgsubsticclem 40705
Description: lemma for itgsubsticc 40706. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsubsticclem.1 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
itgsubsticclem.2 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
itgsubsticclem.3 (𝜑𝑋 ∈ ℝ)
itgsubsticclem.4 (𝜑𝑌 ∈ ℝ)
itgsubsticclem.5 (𝜑𝑋𝑌)
itgsubsticclem.6 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
itgsubsticclem.7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubsticclem.8 (𝜑𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ))
itgsubsticclem.9 (𝜑𝐾 ∈ ℝ)
itgsubsticclem.10 (𝜑𝐿 ∈ ℝ)
itgsubsticclem.11 (𝜑𝐾𝐿)
itgsubsticclem.12 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubsticclem.13 (𝑢 = 𝐴𝐶 = 𝐸)
itgsubsticclem.14 (𝑥 = 𝑋𝐴 = 𝐾)
itgsubsticclem.15 (𝑥 = 𝑌𝐴 = 𝐿)
Assertion
Ref Expression
itgsubsticclem (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐸   𝑥,𝐺   𝑢,𝐾,𝑥   𝑢,𝐿,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝜑,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑥,𝑢)   𝐸(𝑥)   𝐹(𝑥,𝑢)   𝐺(𝑢)

Proof of Theorem itgsubsticclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6333 . . . 4 (𝑢 = 𝑤 → (𝐺𝑢) = (𝐺𝑤))
2 nfcv 2913 . . . 4 𝑤(𝐺𝑢)
3 itgsubsticclem.2 . . . . . 6 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
4 nfmpt1 4882 . . . . . 6 𝑢(𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
53, 4nfcxfr 2911 . . . . 5 𝑢𝐺
6 nfcv 2913 . . . . 5 𝑢𝑤
75, 6nffv 6341 . . . 4 𝑢(𝐺𝑤)
81, 2, 7cbvditg 23837 . . 3 ⨜[𝐾𝐿](𝐺𝑢) d𝑢 = ⨜[𝐾𝐿](𝐺𝑤) d𝑤
9 itgsubsticclem.11 . . . 4 (𝜑𝐾𝐿)
10 itgsubsticclem.9 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
11 itgsubsticclem.10 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
1210, 11iccssred 40245 . . . . . . . 8 (𝜑 → (𝐾[,]𝐿) ⊆ ℝ)
1312adantr 466 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐾[,]𝐿) ⊆ ℝ)
14 ioossicc 12463 . . . . . . . . 9 (𝐾(,)𝐿) ⊆ (𝐾[,]𝐿)
1514sseli 3748 . . . . . . . 8 (𝑢 ∈ (𝐾(,)𝐿) → 𝑢 ∈ (𝐾[,]𝐿))
1615adantl 467 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → 𝑢 ∈ (𝐾[,]𝐿))
1713, 16sseldd 3753 . . . . . 6 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → 𝑢 ∈ ℝ)
1816iftrued 4234 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) = (𝐹𝑢))
19 itgsubsticclem.1 . . . . . . . . . . . . 13 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
2019a1i 11 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶))
21 itgsubsticclem.8 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ))
22 cncff 22915 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ) → 𝐹:(𝐾[,]𝐿)⟶ℂ)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐾[,]𝐿)⟶ℂ)
2420, 23feq1dd 39866 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶):(𝐾[,]𝐿)⟶ℂ)
2524mptex2 6528 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐾[,]𝐿)) → 𝐶 ∈ ℂ)
2616, 25syldan 579 . . . . . . . . 9 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → 𝐶 ∈ ℂ)
2719fvmpt2 6435 . . . . . . . . 9 ((𝑢 ∈ (𝐾[,]𝐿) ∧ 𝐶 ∈ ℂ) → (𝐹𝑢) = 𝐶)
2816, 26, 27syl2anc 573 . . . . . . . 8 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐹𝑢) = 𝐶)
2928, 26eqeltrd 2850 . . . . . . 7 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐹𝑢) ∈ ℂ)
3018, 29eqeltrd 2850 . . . . . 6 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) ∈ ℂ)
313fvmpt2 6435 . . . . . 6 ((𝑢 ∈ ℝ ∧ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) ∈ ℂ) → (𝐺𝑢) = if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
3217, 30, 31syl2anc 573 . . . . 5 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐺𝑢) = if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))))
3332, 18, 283eqtrd 2809 . . . 4 ((𝜑𝑢 ∈ (𝐾(,)𝐿)) → (𝐺𝑢) = 𝐶)
349, 33ditgeq3d 40694 . . 3 (𝜑 → ⨜[𝐾𝐿](𝐺𝑢) d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
35 itgsubsticclem.3 . . . 4 (𝜑𝑋 ∈ ℝ)
36 itgsubsticclem.4 . . . 4 (𝜑𝑌 ∈ ℝ)
37 itgsubsticclem.5 . . . 4 (𝜑𝑋𝑌)
38 mnfxr 10301 . . . . 5 -∞ ∈ ℝ*
3938a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
40 pnfxr 10297 . . . . 5 +∞ ∈ ℝ*
4140a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
42 ioomax 12452 . . . . . . . . 9 (-∞(,)+∞) = ℝ
4342eqcomi 2780 . . . . . . . 8 ℝ = (-∞(,)+∞)
4443a1i 11 . . . . . . 7 (𝜑 → ℝ = (-∞(,)+∞))
4512, 44sseqtrd 3790 . . . . . 6 (𝜑 → (𝐾[,]𝐿) ⊆ (-∞(,)+∞))
46 ax-resscn 10198 . . . . . . 7 ℝ ⊆ ℂ
4744, 46syl6eqssr 3805 . . . . . 6 (𝜑 → (-∞(,)+∞) ⊆ ℂ)
48 cncfss 22921 . . . . . 6 (((𝐾[,]𝐿) ⊆ (-∞(,)+∞) ∧ (-∞(,)+∞) ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) ⊆ ((𝑋[,]𝑌)–cn→(-∞(,)+∞)))
4945, 47, 48syl2anc 573 . . . . 5 (𝜑 → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) ⊆ ((𝑋[,]𝑌)–cn→(-∞(,)+∞)))
50 itgsubsticclem.6 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
5149, 50sseldd 3753 . . . 4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(-∞(,)+∞)))
52 itgsubsticclem.7 . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
53 nfmpt1 4882 . . . . . . . . . . 11 𝑢(𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
5419, 53nfcxfr 2911 . . . . . . . . . 10 𝑢𝐹
55 eqid 2771 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
56 eqid 2771 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
57 eqid 2771 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5857cnfldtop 22806 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
5958a1i 11 . . . . . . . . . 10 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
6012, 46syl6ss 3764 . . . . . . . . . . . . 13 (𝜑 → (𝐾[,]𝐿) ⊆ ℂ)
61 ssid 3773 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
62 eqid 2771 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))
63 unicntop 22808 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
6463restid 16301 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
6558, 64ax-mp 5 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
6665eqcomi 2780 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
6757, 62, 66cncfcn 22931 . . . . . . . . . . . . 13 (((𝐾[,]𝐿) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐾[,]𝐿)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
6860, 61, 67sylancl 574 . . . . . . . . . . . 12 (𝜑 → ((𝐾[,]𝐿)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
69 reex 10232 . . . . . . . . . . . . . . . 16 ℝ ∈ V
7069a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ∈ V)
71 restabs 21189 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐾[,]𝐿) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)))
7259, 12, 70, 71syl3anc 1476 . . . . . . . . . . . . . 14 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐾[,]𝐿)) = ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)))
7357tgioo2 22825 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7473eqcomi 2780 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
7675oveq1d 6810 . . . . . . . . . . . . . 14 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐾[,]𝐿)) = ((topGen‘ran (,)) ↾t (𝐾[,]𝐿)))
7772, 76eqtr3d 2807 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) = ((topGen‘ran (,)) ↾t (𝐾[,]𝐿)))
7877oveq1d 6810 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
7968, 78eqtrd 2805 . . . . . . . . . . 11 (𝜑 → ((𝐾[,]𝐿)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
8021, 79eleqtrd 2852 . . . . . . . . . 10 (𝜑𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐾[,]𝐿)) Cn (TopOpen‘ℂfld)))
8154, 55, 56, 3, 10, 11, 9, 59, 80icccncfext 40615 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) ∧ (𝐺 ↾ (𝐾[,]𝐿)) = 𝐹))
8281simpld 482 . . . . . . . 8 (𝜑𝐺 ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)))
83 uniretop 22785 . . . . . . . . 9 ℝ = (topGen‘ran (,))
84 eqid 2771 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t ran 𝐹) = ((TopOpen‘ℂfld) ↾t ran 𝐹)
8583, 84cnf 21270 . . . . . . . 8 (𝐺 ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) → 𝐺:ℝ⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹))
8682, 85syl 17 . . . . . . 7 (𝜑𝐺:ℝ⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹))
8744feq2d 6170 . . . . . . 7 (𝜑 → (𝐺:ℝ⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹) ↔ 𝐺:(-∞(,)+∞)⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹)))
8886, 87mpbid 222 . . . . . 6 (𝜑𝐺:(-∞(,)+∞)⟶ ((TopOpen‘ℂfld) ↾t ran 𝐹))
8988feqmptd 6393 . . . . 5 (𝜑𝐺 = (𝑤 ∈ (-∞(,)+∞) ↦ (𝐺𝑤)))
9023frnd 6191 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℂ)
91 cncfss 22921 . . . . . . 7 ((ran 𝐹 ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-∞(,)+∞)–cn→ran 𝐹) ⊆ ((-∞(,)+∞)–cn→ℂ))
9290, 61, 91sylancl 574 . . . . . 6 (𝜑 → ((-∞(,)+∞)–cn→ran 𝐹) ⊆ ((-∞(,)+∞)–cn→ℂ))
9343oveq2i 6806 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t (-∞(,)+∞))
9473, 93eqtri 2793 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t (-∞(,)+∞))
95 eqid 2771 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ran 𝐹) = ((TopOpen‘ℂfld) ↾t ran 𝐹)
9657, 94, 95cncfcn 22931 . . . . . . . . 9 (((-∞(,)+∞) ⊆ ℂ ∧ ran 𝐹 ⊆ ℂ) → ((-∞(,)+∞)–cn→ran 𝐹) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)))
9747, 90, 96syl2anc 573 . . . . . . . 8 (𝜑 → ((-∞(,)+∞)–cn→ran 𝐹) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)))
9897eqcomd 2777 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ran 𝐹)) = ((-∞(,)+∞)–cn→ran 𝐹))
9982, 98eleqtrd 2852 . . . . . 6 (𝜑𝐺 ∈ ((-∞(,)+∞)–cn→ran 𝐹))
10092, 99sseldd 3753 . . . . 5 (𝜑𝐺 ∈ ((-∞(,)+∞)–cn→ℂ))
10189, 100eqeltrrd 2851 . . . 4 (𝜑 → (𝑤 ∈ (-∞(,)+∞) ↦ (𝐺𝑤)) ∈ ((-∞(,)+∞)–cn→ℂ))
102 itgsubsticclem.12 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
103 fveq2 6333 . . . 4 (𝑤 = 𝐴 → (𝐺𝑤) = (𝐺𝐴))
104 itgsubsticclem.14 . . . 4 (𝑥 = 𝑋𝐴 = 𝐾)
105 itgsubsticclem.15 . . . 4 (𝑥 = 𝑌𝐴 = 𝐿)
10635, 36, 37, 39, 41, 51, 52, 101, 102, 103, 104, 105itgsubst 24031 . . 3 (𝜑 → ⨜[𝐾𝐿](𝐺𝑤) d𝑤 = ⨜[𝑋𝑌]((𝐺𝐴) · 𝐵) d𝑥)
1078, 34, 1063eqtr3a 2829 . 2 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌]((𝐺𝐴) · 𝐵) d𝑥)
1083a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿)))))
109 simpr 471 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝑢 = 𝐴)
11057cnfldtopon 22805 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11135, 36iccssred 40245 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
112111, 46syl6ss 3764 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ⊆ ℂ)
113 resttopon 21185 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝑋[,]𝑌) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)))
114110, 112, 113sylancr 575 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)))
115 resttopon 21185 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐾[,]𝐿) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)))
116110, 60, 115sylancr 575 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)))
117 eqid 2771 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) = ((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌))
11857, 117, 62cncfcn 22931 . . . . . . . . . . . . . . 15 (((𝑋[,]𝑌) ⊆ ℂ ∧ (𝐾[,]𝐿) ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) = (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))))
119112, 60, 118syl2anc 573 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) = (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))))
12050, 119eleqtrd 2852 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿))))
121 cnf2 21273 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) ∈ (TopOn‘(𝑋[,]𝑌)) ∧ ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)) ∈ (TopOn‘(𝐾[,]𝐿)) ∧ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (𝑋[,]𝑌)) Cn ((TopOpen‘ℂfld) ↾t (𝐾[,]𝐿)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
122114, 116, 120, 121syl3anc 1476 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
123122adantr 466 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
124 eqid 2771 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)
125124fmpt 6525 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿) ↔ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
126123, 125sylibr 224 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿))
127 ioossicc 12463 . . . . . . . . . . . 12 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
128127sseli 3748 . . . . . . . . . . 11 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
129128adantl 467 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ (𝑋[,]𝑌))
130 rsp 3078 . . . . . . . . . 10 (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝐾[,]𝐿) → (𝑥 ∈ (𝑋[,]𝑌) → 𝐴 ∈ (𝐾[,]𝐿)))
131126, 129, 130sylc 65 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝐾[,]𝐿))
132131adantr 466 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐴 ∈ (𝐾[,]𝐿))
133109, 132eqeltrd 2850 . . . . . . 7 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝑢 ∈ (𝐾[,]𝐿))
134133iftrued 4234 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) = (𝐹𝑢))
135 simpll 750 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝜑)
136135, 133, 25syl2anc 573 . . . . . . 7 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐶 ∈ ℂ)
137133, 136, 27syl2anc 573 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → (𝐹𝑢) = 𝐶)
138 itgsubsticclem.13 . . . . . . 7 (𝑢 = 𝐴𝐶 = 𝐸)
139138adantl 467 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐶 = 𝐸)
140134, 137, 1393eqtrd 2809 . . . . 5 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → if(𝑢 ∈ (𝐾[,]𝐿), (𝐹𝑢), if(𝑢 < 𝐾, (𝐹𝐾), (𝐹𝐿))) = 𝐸)
14112adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐾[,]𝐿) ⊆ ℝ)
142141, 131sseldd 3753 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ ℝ)
143 elex 3364 . . . . . . . 8 (𝐴 ∈ (𝐾[,]𝐿) → 𝐴 ∈ V)
144131, 143syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ V)
145 isset 3359 . . . . . . 7 (𝐴 ∈ V ↔ ∃𝑢 𝑢 = 𝐴)
146144, 145sylib 208 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ∃𝑢 𝑢 = 𝐴)
147139, 136eqeltrrd 2851 . . . . . 6 (((𝜑𝑥 ∈ (𝑋(,)𝑌)) ∧ 𝑢 = 𝐴) → 𝐸 ∈ ℂ)
148146, 147exlimddv 2015 . . . . 5 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℂ)
149108, 140, 142, 148fvmptd 6432 . . . 4 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐺𝐴) = 𝐸)
150149oveq1d 6810 . . 3 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝐺𝐴) · 𝐵) = (𝐸 · 𝐵))
15137, 150ditgeq3d 40694 . 2 (𝜑 → ⨜[𝑋𝑌]((𝐺𝐴) · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
152107, 151eqtrd 2805 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wex 1852  wcel 2145  wral 3061  Vcvv 3351  cin 3722  wss 3723  ifcif 4226   cuni 4575   class class class wbr 4787  cmpt 4864  ran crn 5251  cres 5252  wf 6026  cfv 6030  (class class class)co 6795  cc 10139  cr 10140   · cmul 10146  +∞cpnf 10276  -∞cmnf 10277  *cxr 10278   < clt 10279  cle 10280  (,)cioo 12379  [,]cicc 12382  t crest 16288  TopOpenctopn 16289  topGenctg 16305  fldccnfld 19960  Topctop 20917  TopOnctopon 20934   Cn ccn 21248  cnccncf 22898  𝐿1cibl 23604  cdit 23829   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cc 9462  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220  ax-mulf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-ofr 7048  df-om 7216  df-1st 7318  df-2nd 7319  df-supp 7450  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-omul 7721  df-er 7899  df-map 8014  df-pm 8015  df-ixp 8066  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fsupp 8435  df-fi 8476  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-acn 8971  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-z 11584  df-dec 11700  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-cmp 21410  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-itg2 23608  df-ibl 23609  df-itg 23610  df-0p 23656  df-ditg 23830  df-limc 23849  df-dv 23850
This theorem is referenced by:  itgsubsticc  40706
  Copyright terms: Public domain W3C validator