Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsbtaddcnst Structured version   Visualization version   GIF version

Theorem itgsbtaddcnst 46019
Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsbtaddcnst.a (𝜑𝐴 ∈ ℝ)
itgsbtaddcnst.b (𝜑𝐵 ∈ ℝ)
itgsbtaddcnst.aleb (𝜑𝐴𝐵)
itgsbtaddcnst.x (𝜑𝑋 ∈ ℝ)
itgsbtaddcnst.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgsbtaddcnst (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Distinct variable groups:   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡   𝜑,𝑠,𝑡

Proof of Theorem itgsbtaddcnst
StepHypRef Expression
1 itgsbtaddcnst.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgsbtaddcnst.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgsbtaddcnst.aleb . . 3 (𝜑𝐴𝐵)
41, 2iccssred 13331 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
54sselda 3934 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
65recnd 11137 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
7 itgsbtaddcnst.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87recnd 11137 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
98adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ)
106, 9negsubd 11475 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡𝑋))
1110eqcomd 2737 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) = (𝑡 + -𝑋))
1211mpteq2dva 5184 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)))
131adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
147adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
1513, 14resubcld 11542 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ∈ ℝ)
162adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1716, 14resubcld 11542 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
185, 14resubcld 11542 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℝ)
19 simpr 484 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
201, 2jca 511 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
22 elicc2 13308 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2321, 22syl 17 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2419, 23mpbid 232 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵))
2524simp2d 1143 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴𝑡)
2613, 5, 14, 25lesub1dd 11730 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ≤ (𝑡𝑋))
2724simp3d 1144 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡𝐵)
285, 16, 14, 27lesub1dd 11730 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ≤ (𝐵𝑋))
2915, 17, 18, 26, 28eliccd 45543 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ((𝐴𝑋)[,](𝐵𝑋)))
3029fmpttd 7048 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
3112, 30feq1dd 6634 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
321, 7resubcld 11542 . . . . . . . 8 (𝜑 → (𝐴𝑋) ∈ ℝ)
332, 7resubcld 11542 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℝ)
3432, 33iccssred 13331 . . . . . . 7 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℝ)
35 ax-resscn 11060 . . . . . . 7 ℝ ⊆ ℂ
3634, 35sstrdi 3947 . . . . . 6 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ)
374, 35sstrdi 3947 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
3837resmptd 5989 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)))
39 ssid 3957 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
40 cncfmptid 24831 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4139, 39, 40mp2an 692 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
4241a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4339a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
44 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
4543, 44, 43constcncfg 45909 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
4642, 45subcncf 25370 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
478, 46syl 17 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
48 rescncf 24815 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
4937, 47, 48sylc 65 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5038, 49eqeltrrd 2832 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5112, 50eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
52 cncfcdm 24816 . . . . . 6 ((((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5336, 51, 52syl2anc 584 . . . . 5 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5431, 53mpbird 257 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
5512, 54eqeltrd 2831 . . 3 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
56 eqid 2731 . . . . 5 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
578adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
58 simpr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
5957, 58addcomd 11312 . . . . . . 7 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
6059mpteq2dva 5184 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
61 eqid 2731 . . . . . . . 8 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
6261addccncf 24835 . . . . . . 7 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
638, 62syl 17 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
6460, 63eqeltrd 2831 . . . . 5 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
651adantr 480 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
662adantr 480 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
677adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
6834sselda 3934 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ℝ)
6967, 68readdcld 11138 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ ℝ)
70 simpr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
7132adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
7233adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
73 elicc2 13308 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7471, 72, 73syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7570, 74mpbid 232 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋)))
7675simp2d 1143 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑠)
7765, 67, 68lesubadd2d 11713 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑠𝐴 ≤ (𝑋 + 𝑠)))
7876, 77mpbid 232 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑠))
7975simp3d 1144 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ≤ (𝐵𝑋))
8067, 68, 66leaddsub2d 11716 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵𝑠 ≤ (𝐵𝑋)))
8179, 80mpbird 257 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ≤ 𝐵)
8265, 66, 69, 78, 81eliccd 45543 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵))
8356, 64, 36, 37, 82cncfmptssg 45908 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→(𝐴[,]𝐵)))
84 itgsbtaddcnst.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8583, 84cncfcompt 45920 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→ℂ))
86 ax-1cn 11061 . . . . . 6 1 ∈ ℂ
87 ioosscn 13305 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
88 cncfmptc 24830 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
8986, 87, 39, 88mp3an 1463 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)
9089a1i 11 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
91 fconstmpt 5678 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)
92 ioombl 25491 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
9392a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
94 volioo 25495 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
951, 2, 3, 94syl3anc 1373 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
962, 1resubcld 11542 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
9795, 96eqeltrd 2831 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
98 1cnd 11104 . . . . . 6 (𝜑 → 1 ∈ ℂ)
99 iblconst 25744 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10093, 97, 98, 99syl3anc 1373 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10191, 100eqeltrrid 2836 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10290, 101elind 4150 . . 3 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10335a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
10418recnd 11137 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℂ)
105 tgioo4 24718 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106 eqid 2731 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107 iccntr 24735 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10820, 107syl 17 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
109103, 4, 104, 105, 106, 108dvmptntr 25900 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))))
110 reelprrecn 11095 . . . . . 6 ℝ ∈ {ℝ, ℂ}
111110a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
112 ioossre 13304 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
113112sseli 3930 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ)
114113adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ)
115114recnd 11137 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ)
116 1cnd 11104 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
117103sselda 3934 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
118 1cnd 11104 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
119111dvmptid 25886 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
120112a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
121 iooretop 24678 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
122121a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
123111, 117, 118, 119, 120, 105, 106, 122dvmptres 25892 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
1248adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
125 0cnd 11102 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
1268adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑋 ∈ ℂ)
127 0cnd 11102 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
128111, 8dvmptc 25887 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0))
129111, 126, 127, 128, 120, 105, 106, 122dvmptres 25892 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0))
130111, 115, 116, 123, 124, 125, 129dvmptsub 25896 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)))
131116subid1d 11458 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) = 1)
132131mpteq2dva 5184 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
133109, 130, 1323eqtrd 2770 . . 3 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
134 oveq2 7354 . . . 4 (𝑠 = (𝑡𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡𝑋)))
135134fveq2d 6826 . . 3 (𝑠 = (𝑡𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡𝑋))))
136 oveq1 7353 . . 3 (𝑡 = 𝐴 → (𝑡𝑋) = (𝐴𝑋))
137 oveq1 7353 . . 3 (𝑡 = 𝐵 → (𝑡𝑋) = (𝐵𝑋))
1381, 2, 3, 55, 85, 102, 133, 135, 136, 137, 32, 33itgsubsticc 46013 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡)
139124, 115pncan3d 11472 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡𝑋)) = 𝑡)
140139fveq2d 6826 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡𝑋))) = (𝐹𝑡))
141140oveq1d 7361 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = ((𝐹𝑡) · 1))
142 cncff 24811 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
14384, 142syl 17 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
144143adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
145 ioossicc 13330 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
146145sseli 3930 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵))
147146adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
148144, 147ffvelcdmd 7018 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
149148mulridd 11126 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹𝑡) · 1) = (𝐹𝑡))
150141, 149eqtrd 2766 . . 3 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = (𝐹𝑡))
1513, 150ditgeq3d 46001 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
152138, 151eqtrd 2766 1 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  {csn 4576  {cpr 4578   class class class wbr 5091  cmpt 5172   × cxp 5614  dom cdm 5616  ran crn 5617  cres 5618  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cle 11144  cmin 11341  -cneg 11342  (,)cioo 13242  [,]cicc 13245  TopOpenctopn 17322  topGenctg 17338  fldccnfld 21289  intcnt 22930  cnccncf 24794  volcvol 25389  𝐿1cibl 25543  cdit 25772   D cdv 25789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-symdif 4203  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-cmp 23300  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-ovol 25390  df-vol 25391  df-mbf 25545  df-itg1 25546  df-itg2 25547  df-ibl 25548  df-itg 25549  df-0p 25596  df-ditg 25773  df-limc 25792  df-dv 25793
This theorem is referenced by:  fourierdlem82  46225
  Copyright terms: Public domain W3C validator