Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsbtaddcnst Structured version   Visualization version   GIF version

Theorem itgsbtaddcnst 45508
Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsbtaddcnst.a (𝜑𝐴 ∈ ℝ)
itgsbtaddcnst.b (𝜑𝐵 ∈ ℝ)
itgsbtaddcnst.aleb (𝜑𝐴𝐵)
itgsbtaddcnst.x (𝜑𝑋 ∈ ℝ)
itgsbtaddcnst.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgsbtaddcnst (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Distinct variable groups:   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡   𝜑,𝑠,𝑡

Proof of Theorem itgsbtaddcnst
StepHypRef Expression
1 itgsbtaddcnst.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgsbtaddcnst.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgsbtaddcnst.aleb . . 3 (𝜑𝐴𝐵)
41, 2iccssred 13446 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
54sselda 3976 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
65recnd 11274 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
7 itgsbtaddcnst.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87recnd 11274 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
98adantr 479 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ)
106, 9negsubd 11609 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡𝑋))
1110eqcomd 2731 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) = (𝑡 + -𝑋))
1211mpteq2dva 5249 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)))
131adantr 479 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
147adantr 479 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
1513, 14resubcld 11674 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ∈ ℝ)
162adantr 479 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1716, 14resubcld 11674 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
185, 14resubcld 11674 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℝ)
19 simpr 483 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
201, 2jca 510 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 479 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
22 elicc2 13424 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2321, 22syl 17 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2419, 23mpbid 231 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵))
2524simp2d 1140 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴𝑡)
2613, 5, 14, 25lesub1dd 11862 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ≤ (𝑡𝑋))
2724simp3d 1141 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡𝐵)
285, 16, 14, 27lesub1dd 11862 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ≤ (𝐵𝑋))
2915, 17, 18, 26, 28eliccd 45027 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ((𝐴𝑋)[,](𝐵𝑋)))
3029fmpttd 7124 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
3112, 30feq1dd 44679 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
321, 7resubcld 11674 . . . . . . . 8 (𝜑 → (𝐴𝑋) ∈ ℝ)
332, 7resubcld 11674 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℝ)
3432, 33iccssred 13446 . . . . . . 7 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℝ)
35 ax-resscn 11197 . . . . . . 7 ℝ ⊆ ℂ
3634, 35sstrdi 3989 . . . . . 6 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ)
374, 35sstrdi 3989 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
3837resmptd 6045 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)))
39 ssid 3999 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
40 cncfmptid 24877 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4139, 39, 40mp2an 690 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
4241a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4339a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
44 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
4543, 44, 43constcncfg 45398 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
4642, 45subcncf 25417 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
478, 46syl 17 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
48 rescncf 24861 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
4937, 47, 48sylc 65 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5038, 49eqeltrrd 2826 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5112, 50eqeltrrd 2826 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
52 cncfcdm 24862 . . . . . 6 ((((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5336, 51, 52syl2anc 582 . . . . 5 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5431, 53mpbird 256 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
5512, 54eqeltrd 2825 . . 3 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
56 eqid 2725 . . . . 5 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
578adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
58 simpr 483 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
5957, 58addcomd 11448 . . . . . . 7 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
6059mpteq2dva 5249 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
61 eqid 2725 . . . . . . . 8 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
6261addccncf 24881 . . . . . . 7 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
638, 62syl 17 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
6460, 63eqeltrd 2825 . . . . 5 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
651adantr 479 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
662adantr 479 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
677adantr 479 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
6834sselda 3976 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ℝ)
6967, 68readdcld 11275 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ ℝ)
70 simpr 483 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
7132adantr 479 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
7233adantr 479 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
73 elicc2 13424 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7471, 72, 73syl2anc 582 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7570, 74mpbid 231 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋)))
7675simp2d 1140 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑠)
7765, 67, 68lesubadd2d 11845 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑠𝐴 ≤ (𝑋 + 𝑠)))
7876, 77mpbid 231 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑠))
7975simp3d 1141 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ≤ (𝐵𝑋))
8067, 68, 66leaddsub2d 11848 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵𝑠 ≤ (𝐵𝑋)))
8179, 80mpbird 256 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ≤ 𝐵)
8265, 66, 69, 78, 81eliccd 45027 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵))
8356, 64, 36, 37, 82cncfmptssg 45397 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→(𝐴[,]𝐵)))
84 itgsbtaddcnst.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8583, 84cncfcompt 45409 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→ℂ))
86 ax-1cn 11198 . . . . . 6 1 ∈ ℂ
87 ioosscn 13421 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
88 cncfmptc 24876 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
8986, 87, 39, 88mp3an 1457 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)
9089a1i 11 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
91 fconstmpt 5740 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)
92 ioombl 25538 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
9392a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
94 volioo 25542 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
951, 2, 3, 94syl3anc 1368 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
962, 1resubcld 11674 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
9795, 96eqeltrd 2825 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
98 1cnd 11241 . . . . . 6 (𝜑 → 1 ∈ ℂ)
99 iblconst 25791 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10093, 97, 98, 99syl3anc 1368 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10191, 100eqeltrrid 2830 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10290, 101elind 4192 . . 3 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10335a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
10418recnd 11274 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℂ)
105 eqid 2725 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
106105tgioo2 24763 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
107 iccntr 24781 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10820, 107syl 17 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
109103, 4, 104, 106, 105, 108dvmptntr 25947 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))))
110 reelprrecn 11232 . . . . . 6 ℝ ∈ {ℝ, ℂ}
111110a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
112 ioossre 13420 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
113112sseli 3972 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ)
114113adantl 480 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ)
115114recnd 11274 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ)
116 1cnd 11241 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
117103sselda 3976 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
118 1cnd 11241 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
119111dvmptid 25933 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
120112a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
121 iooretop 24726 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
122121a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
123111, 117, 118, 119, 120, 106, 105, 122dvmptres 25939 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
1248adantr 479 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
125 0cnd 11239 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
1268adantr 479 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑋 ∈ ℂ)
127 0cnd 11239 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
128111, 8dvmptc 25934 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0))
129111, 126, 127, 128, 120, 106, 105, 122dvmptres 25939 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0))
130111, 115, 116, 123, 124, 125, 129dvmptsub 25943 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)))
131116subid1d 11592 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) = 1)
132131mpteq2dva 5249 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
133109, 130, 1323eqtrd 2769 . . 3 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
134 oveq2 7427 . . . 4 (𝑠 = (𝑡𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡𝑋)))
135134fveq2d 6900 . . 3 (𝑠 = (𝑡𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡𝑋))))
136 oveq1 7426 . . 3 (𝑡 = 𝐴 → (𝑡𝑋) = (𝐴𝑋))
137 oveq1 7426 . . 3 (𝑡 = 𝐵 → (𝑡𝑋) = (𝐵𝑋))
1381, 2, 3, 55, 85, 102, 133, 135, 136, 137, 32, 33itgsubsticc 45502 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡)
139124, 115pncan3d 11606 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡𝑋)) = 𝑡)
140139fveq2d 6900 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡𝑋))) = (𝐹𝑡))
141140oveq1d 7434 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = ((𝐹𝑡) · 1))
142 cncff 24857 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
14384, 142syl 17 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
144143adantr 479 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
145 ioossicc 13445 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
146145sseli 3972 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵))
147146adantl 480 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
148144, 147ffvelcdmd 7094 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
149148mulridd 11263 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹𝑡) · 1) = (𝐹𝑡))
150141, 149eqtrd 2765 . . 3 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = (𝐹𝑡))
1513, 150ditgeq3d 45490 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
152138, 151eqtrd 2765 1 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3944  {csn 4630  {cpr 4632   class class class wbr 5149  cmpt 5232   × cxp 5676  dom cdm 5678  ran crn 5679  cres 5680  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  cle 11281  cmin 11476  -cneg 11477  (,)cioo 13359  [,]cicc 13362  TopOpenctopn 17406  topGenctg 17422  fldccnfld 21296  intcnt 22965  cnccncf 24840  volcvol 25436  𝐿1cibl 25590  cdit 25819   D cdv 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-symdif 4241  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593  df-itg2 25594  df-ibl 25595  df-itg 25596  df-0p 25643  df-ditg 25820  df-limc 25839  df-dv 25840
This theorem is referenced by:  fourierdlem82  45714
  Copyright terms: Public domain W3C validator