Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsbtaddcnst Structured version   Visualization version   GIF version

Theorem itgsbtaddcnst 40990
Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsbtaddcnst.a (𝜑𝐴 ∈ ℝ)
itgsbtaddcnst.b (𝜑𝐵 ∈ ℝ)
itgsbtaddcnst.aleb (𝜑𝐴𝐵)
itgsbtaddcnst.x (𝜑𝑋 ∈ ℝ)
itgsbtaddcnst.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgsbtaddcnst (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Distinct variable groups:   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡   𝜑,𝑠,𝑡

Proof of Theorem itgsbtaddcnst
StepHypRef Expression
1 itgsbtaddcnst.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgsbtaddcnst.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgsbtaddcnst.aleb . . 3 (𝜑𝐴𝐵)
41, 2iccssred 40524 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
54sselda 3827 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
65recnd 10392 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
7 itgsbtaddcnst.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87recnd 10392 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
98adantr 474 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ)
106, 9negsubd 10726 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡𝑋))
1110eqcomd 2831 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) = (𝑡 + -𝑋))
1211mpteq2dva 4969 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)))
131adantr 474 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
147adantr 474 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
1513, 14resubcld 10789 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ∈ ℝ)
162adantr 474 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1716, 14resubcld 10789 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
185, 14resubcld 10789 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℝ)
19 simpr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
201, 2jca 507 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
22 elicc2 12533 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2321, 22syl 17 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2419, 23mpbid 224 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵))
2524simp2d 1177 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴𝑡)
2613, 5, 14, 25lesub1dd 10975 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ≤ (𝑡𝑋))
2724simp3d 1178 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡𝐵)
285, 16, 14, 27lesub1dd 10975 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ≤ (𝐵𝑋))
2915, 17, 18, 26, 28eliccd 40523 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ((𝐴𝑋)[,](𝐵𝑋)))
3029fmpttd 6639 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
3112, 30feq1dd 40155 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
321, 7resubcld 10789 . . . . . . . 8 (𝜑 → (𝐴𝑋) ∈ ℝ)
332, 7resubcld 10789 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℝ)
3432, 33iccssred 40524 . . . . . . 7 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℝ)
35 ax-resscn 10316 . . . . . . 7 ℝ ⊆ ℂ
3634, 35syl6ss 3839 . . . . . 6 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ)
374, 35syl6ss 3839 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
3837resmptd 5693 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)))
39 ssid 3848 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
40 cncfmptid 23092 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4139, 39, 40mp2an 683 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
4241a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4339a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
44 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
4543, 44, 43constcncfg 40877 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
4642, 45subcncf 40875 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
478, 46syl 17 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
48 rescncf 23077 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
4937, 47, 48sylc 65 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5038, 49eqeltrrd 2907 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5112, 50eqeltrrd 2907 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
52 cncffvrn 23078 . . . . . 6 ((((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5336, 51, 52syl2anc 579 . . . . 5 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5431, 53mpbird 249 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
5512, 54eqeltrd 2906 . . 3 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
56 eqid 2825 . . . . 5 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
578adantr 474 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
58 simpr 479 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
5957, 58addcomd 10564 . . . . . . 7 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
6059mpteq2dva 4969 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
61 eqid 2825 . . . . . . . 8 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
6261addccncf 23096 . . . . . . 7 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
638, 62syl 17 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
6460, 63eqeltrd 2906 . . . . 5 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
651adantr 474 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
662adantr 474 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
677adantr 474 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
6834sselda 3827 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ℝ)
6967, 68readdcld 10393 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ ℝ)
70 simpr 479 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
7132adantr 474 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
7233adantr 474 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
73 elicc2 12533 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7471, 72, 73syl2anc 579 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7570, 74mpbid 224 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋)))
7675simp2d 1177 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑠)
7765, 67, 68lesubadd2d 10958 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑠𝐴 ≤ (𝑋 + 𝑠)))
7876, 77mpbid 224 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑠))
7975simp3d 1178 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ≤ (𝐵𝑋))
8067, 68, 66leaddsub2d 10961 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵𝑠 ≤ (𝐵𝑋)))
8179, 80mpbird 249 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ≤ 𝐵)
8265, 66, 69, 78, 81eliccd 40523 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵))
8356, 64, 36, 37, 82cncfmptssg 40876 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→(𝐴[,]𝐵)))
84 itgsbtaddcnst.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8583, 84cncfcompt 40889 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→ℂ))
86 ax-1cn 10317 . . . . . 6 1 ∈ ℂ
87 ioosscn 40513 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
88 cncfmptc 23091 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
8986, 87, 39, 88mp3an 1589 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)
9089a1i 11 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
91 fconstmpt 5402 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)
92 ioombl 23738 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
9392a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
94 volioo 23742 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
951, 2, 3, 94syl3anc 1494 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
962, 1resubcld 10789 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
9795, 96eqeltrd 2906 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
98 1cnd 10358 . . . . . 6 (𝜑 → 1 ∈ ℂ)
99 iblconst 23990 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10093, 97, 98, 99syl3anc 1494 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10191, 100syl5eqelr 2911 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10290, 101elind 4027 . . 3 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10335a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
10418recnd 10392 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℂ)
105 eqid 2825 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
106105tgioo2 22983 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
107 iccntr 23001 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10820, 107syl 17 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
109103, 4, 104, 106, 105, 108dvmptntr 24140 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))))
110 reelprrecn 10351 . . . . . 6 ℝ ∈ {ℝ, ℂ}
111110a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
112 ioossre 12530 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
113112sseli 3823 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ)
114113adantl 475 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ)
115114recnd 10392 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ)
116 1cnd 10358 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
117103sselda 3827 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
118 1cnd 10358 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
119111dvmptid 24126 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
120112a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
121 iooretop 22946 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
122121a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
123111, 117, 118, 119, 120, 106, 105, 122dvmptres 24132 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
1248adantr 474 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
125 0cnd 10356 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
1268adantr 474 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑋 ∈ ℂ)
127 0cnd 10356 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
128111, 8dvmptc 24127 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0))
129111, 126, 127, 128, 120, 106, 105, 122dvmptres 24132 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0))
130111, 115, 116, 123, 124, 125, 129dvmptsub 24136 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)))
131116subid1d 10709 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) = 1)
132131mpteq2dva 4969 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
133109, 130, 1323eqtrd 2865 . . 3 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
134 oveq2 6918 . . . 4 (𝑠 = (𝑡𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡𝑋)))
135134fveq2d 6441 . . 3 (𝑠 = (𝑡𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡𝑋))))
136 oveq1 6917 . . 3 (𝑡 = 𝐴 → (𝑡𝑋) = (𝐴𝑋))
137 oveq1 6917 . . 3 (𝑡 = 𝐵 → (𝑡𝑋) = (𝐵𝑋))
1381, 2, 3, 55, 85, 102, 133, 135, 136, 137, 32, 33itgsubsticc 40984 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡)
139124, 115pncan3d 10723 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡𝑋)) = 𝑡)
140139fveq2d 6441 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡𝑋))) = (𝐹𝑡))
141140oveq1d 6925 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = ((𝐹𝑡) · 1))
142 cncff 23073 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
14384, 142syl 17 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
144143adantr 474 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
145 ioossicc 12554 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
146145sseli 3823 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵))
147146adantl 475 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
148144, 147ffvelrnd 6614 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
149148mulid1d 10381 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹𝑡) · 1) = (𝐹𝑡))
150141, 149eqtrd 2861 . . 3 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = (𝐹𝑡))
1513, 150ditgeq3d 40972 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
152138, 151eqtrd 2861 1 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wss 3798  {csn 4399  {cpr 4401   class class class wbr 4875  cmpt 4954   × cxp 5344  dom cdm 5346  ran crn 5347  cres 5348  wf 6123  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  cle 10399  cmin 10592  -cneg 10593  (,)cioo 12470  [,]cicc 12473  TopOpenctopn 16442  topGenctg 16458  fldccnfld 20113  intcnt 21199  cnccncf 23056  volcvol 23636  𝐿1cibl 23790  cdit 24016   D cdv 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cc 9579  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-symdif 4072  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-disj 4844  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-ofr 7163  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-omul 7836  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-acn 9088  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-limsup 14586  df-clim 14603  df-rlim 14604  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-cmp 21568  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-ovol 23637  df-vol 23638  df-mbf 23792  df-itg1 23793  df-itg2 23794  df-ibl 23795  df-itg 23796  df-0p 23843  df-ditg 24017  df-limc 24036  df-dv 24037
This theorem is referenced by:  fourierdlem82  41197
  Copyright terms: Public domain W3C validator