Proof of Theorem itgsbtaddcnst
| Step | Hyp | Ref
| Expression |
| 1 | | itgsbtaddcnst.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | itgsbtaddcnst.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | itgsbtaddcnst.aleb |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 4 | 1, 2 | iccssred 13451 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 5 | 4 | sselda 3958 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ) |
| 6 | 5 | recnd 11263 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ) |
| 7 | | itgsbtaddcnst.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 8 | 7 | recnd 11263 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ) |
| 10 | 6, 9 | negsubd 11600 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡 − 𝑋)) |
| 11 | 10 | eqcomd 2741 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) = (𝑡 + -𝑋)) |
| 12 | 11 | mpteq2dva 5214 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋))) |
| 13 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
| 14 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
| 15 | 13, 14 | resubcld 11665 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑋) ∈ ℝ) |
| 16 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 17 | 16, 14 | resubcld 11665 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐵 − 𝑋) ∈ ℝ) |
| 18 | 5, 14 | resubcld 11665 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ℝ) |
| 19 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 20 | 1, 2 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 22 | | elicc2 13428 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵))) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵))) |
| 24 | 19, 23 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵)) |
| 25 | 24 | simp2d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑡) |
| 26 | 13, 5, 14, 25 | lesub1dd 11853 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑋) ≤ (𝑡 − 𝑋)) |
| 27 | 24 | simp3d 1144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≤ 𝐵) |
| 28 | 5, 16, 14, 27 | lesub1dd 11853 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ≤ (𝐵 − 𝑋)) |
| 29 | 15, 17, 18, 26, 28 | eliccd 45533 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 30 | 29 | fmpttd 7105 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 31 | 12, 30 | feq1dd 6691 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 32 | 1, 7 | resubcld 11665 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 − 𝑋) ∈ ℝ) |
| 33 | 2, 7 | resubcld 11665 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
| 34 | 32, 33 | iccssred 13451 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℝ) |
| 35 | | ax-resscn 11186 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
| 36 | 34, 35 | sstrdi 3971 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℂ) |
| 37 | 4, 35 | sstrdi 3971 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
| 38 | 37 | resmptd 6027 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) |
| 39 | | ssid 3981 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 40 | | cncfmptid 24857 |
. . . . . . . . . . . . 13
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
| 41 | 39, 39, 40 | mp2an 692 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ) |
| 42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
| 43 | 39 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ℂ
⊆ ℂ) |
| 44 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → 𝑋 ∈
ℂ) |
| 45 | 43, 44, 43 | constcncfg 45901 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) |
| 46 | 42, 45 | subcncf 25397 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 47 | 8, 46 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 48 | | rescncf 24841 |
. . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
| 49 | 37, 47, 48 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 50 | 38, 49 | eqeltrrd 2835 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 51 | 12, 50 | eqeltrrd 2835 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 52 | | cncfcdm 24842 |
. . . . . 6
⊢ ((((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 53 | 36, 51, 52 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 54 | 31, 53 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 55 | 12, 54 | eqeltrd 2834 |
. . 3
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 56 | | eqid 2735 |
. . . . 5
⊢ (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) |
| 57 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) |
| 58 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
| 59 | 57, 58 | addcomd 11437 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋)) |
| 60 | 59 | mpteq2dva 5214 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))) |
| 61 | | eqid 2735 |
. . . . . . . 8
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) |
| 62 | 61 | addccncf 24861 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 63 | 8, 62 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 64 | 60, 63 | eqeltrd 2834 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) |
| 65 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐴 ∈ ℝ) |
| 66 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐵 ∈ ℝ) |
| 67 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑋 ∈ ℝ) |
| 68 | 34 | sselda 3958 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ∈ ℝ) |
| 69 | 67, 68 | readdcld 11264 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) |
| 70 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 71 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ∈ ℝ) |
| 72 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐵 − 𝑋) ∈ ℝ) |
| 73 | | elicc2 13428 |
. . . . . . . . . 10
⊢ (((𝐴 − 𝑋) ∈ ℝ ∧ (𝐵 − 𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋)))) |
| 74 | 71, 72, 73 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋)))) |
| 75 | 70, 74 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋))) |
| 76 | 75 | simp2d 1143 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ≤ 𝑠) |
| 77 | 65, 67, 68 | lesubadd2d 11836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → ((𝐴 − 𝑋) ≤ 𝑠 ↔ 𝐴 ≤ (𝑋 + 𝑠))) |
| 78 | 76, 77 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐴 ≤ (𝑋 + 𝑠)) |
| 79 | 75 | simp3d 1144 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ≤ (𝐵 − 𝑋)) |
| 80 | 67, 68, 66 | leaddsub2d 11839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵 ↔ 𝑠 ≤ (𝐵 − 𝑋))) |
| 81 | 79, 80 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ≤ 𝐵) |
| 82 | 65, 66, 69, 78, 81 | eliccd 45533 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵)) |
| 83 | 56, 64, 36, 37, 82 | cncfmptssg 45900 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴 − 𝑋)[,](𝐵 − 𝑋))–cn→(𝐴[,]𝐵))) |
| 84 | | itgsbtaddcnst.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 85 | 83, 84 | cncfcompt 45912 |
. . 3
⊢ (𝜑 → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴 − 𝑋)[,](𝐵 − 𝑋))–cn→ℂ)) |
| 86 | | ax-1cn 11187 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 87 | | ioosscn 13425 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 88 | | cncfmptc 24856 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑡 ∈
(𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 89 | 86, 87, 39, 88 | mp3an 1463 |
. . . . 5
⊢ (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ) |
| 90 | 89 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 91 | | fconstmpt 5716 |
. . . . 5
⊢ ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) |
| 92 | | ioombl 25518 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ dom vol |
| 93 | 92 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
| 94 | | volioo 25522 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 95 | 1, 2, 3, 94 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 96 | 2, 1 | resubcld 11665 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 97 | 95, 96 | eqeltrd 2834 |
. . . . . 6
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| 98 | | 1cnd 11230 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
| 99 | | iblconst 25771 |
. . . . . 6
⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ)
→ ((𝐴(,)𝐵) × {1}) ∈
𝐿1) |
| 100 | 93, 97, 98, 99 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → ((𝐴(,)𝐵) × {1}) ∈
𝐿1) |
| 101 | 91, 100 | eqeltrrid 2839 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈
𝐿1) |
| 102 | 90, 101 | elind 4175 |
. . 3
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩
𝐿1)) |
| 103 | 35 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 104 | 18 | recnd 11263 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ℂ) |
| 105 | | tgioo4 24744 |
. . . . 5
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 106 | | eqid 2735 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 107 | | iccntr 24761 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 108 | 20, 107 | syl 17 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 109 | 103, 4, 104, 105, 106, 108 | dvmptntr 25927 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡 − 𝑋)))) |
| 110 | | reelprrecn 11221 |
. . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} |
| 111 | 110 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 112 | | ioossre 13424 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 113 | 112 | sseli 3954 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ) |
| 114 | 113 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ) |
| 115 | 114 | recnd 11263 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ) |
| 116 | | 1cnd 11230 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ) |
| 117 | 103 | sselda 3958 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ) |
| 118 | | 1cnd 11230 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 1 ∈
ℂ) |
| 119 | 111 | dvmptid 25913 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1)) |
| 120 | 112 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 121 | | iooretop 24704 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
| 122 | 121 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
| 123 | 111, 117,
118, 119, 120, 105, 106, 122 | dvmptres 25919 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 124 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ) |
| 125 | | 0cnd 11228 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ) |
| 126 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ ℂ) |
| 127 | | 0cnd 11228 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 0 ∈
ℂ) |
| 128 | 111, 8 | dvmptc 25914 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0)) |
| 129 | 111, 126,
127, 128, 120, 105, 106, 122 | dvmptres 25919 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0)) |
| 130 | 111, 115,
116, 123, 124, 125, 129 | dvmptsub 25923 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡 − 𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0))) |
| 131 | 116 | subid1d 11583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) =
1) |
| 132 | 131 | mpteq2dva 5214 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 133 | 109, 130,
132 | 3eqtrd 2774 |
. . 3
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 134 | | oveq2 7413 |
. . . 4
⊢ (𝑠 = (𝑡 − 𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡 − 𝑋))) |
| 135 | 134 | fveq2d 6880 |
. . 3
⊢ (𝑠 = (𝑡 − 𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡 − 𝑋)))) |
| 136 | | oveq1 7412 |
. . 3
⊢ (𝑡 = 𝐴 → (𝑡 − 𝑋) = (𝐴 − 𝑋)) |
| 137 | | oveq1 7412 |
. . 3
⊢ (𝑡 = 𝐵 → (𝑡 − 𝑋) = (𝐵 − 𝑋)) |
| 138 | 1, 2, 3, 55, 85, 102, 133, 135, 136, 137, 32, 33 | itgsubsticc 46005 |
. 2
⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵]((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) d𝑡) |
| 139 | 124, 115 | pncan3d 11597 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡 − 𝑋)) = 𝑡) |
| 140 | 139 | fveq2d 6880 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡 − 𝑋))) = (𝐹‘𝑡)) |
| 141 | 140 | oveq1d 7420 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) = ((𝐹‘𝑡) · 1)) |
| 142 | | cncff 24837 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 143 | 84, 142 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 144 | 143 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 145 | | ioossicc 13450 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 146 | 145 | sseli 3954 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 147 | 146 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 148 | 144, 147 | ffvelcdmd 7075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑡) ∈ ℂ) |
| 149 | 148 | mulridd 11252 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝑡) · 1) = (𝐹‘𝑡)) |
| 150 | 141, 149 | eqtrd 2770 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) = (𝐹‘𝑡)) |
| 151 | 3, 150 | ditgeq3d 45993 |
. 2
⊢ (𝜑 → ⨜[𝐴 → 𝐵]((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) d𝑡 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) |
| 152 | 138, 151 | eqtrd 2770 |
1
⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) |