Proof of Theorem itgsbtaddcnst
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | itgsbtaddcnst.a | . . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 |  | itgsbtaddcnst.b | . . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 3 |  | itgsbtaddcnst.aleb | . . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| 4 | 1, 2 | iccssred 13474 | . . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | 
| 5 | 4 | sselda 3983 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ) | 
| 6 | 5 | recnd 11289 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ) | 
| 7 |  | itgsbtaddcnst.x | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 8 | 7 | recnd 11289 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) | 
| 9 | 8 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ) | 
| 10 | 6, 9 | negsubd 11626 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡 − 𝑋)) | 
| 11 | 10 | eqcomd 2743 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) = (𝑡 + -𝑋)) | 
| 12 | 11 | mpteq2dva 5242 | . . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋))) | 
| 13 | 1 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) | 
| 14 | 7 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) | 
| 15 | 13, 14 | resubcld 11691 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑋) ∈ ℝ) | 
| 16 | 2 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) | 
| 17 | 16, 14 | resubcld 11691 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐵 − 𝑋) ∈ ℝ) | 
| 18 | 5, 14 | resubcld 11691 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ℝ) | 
| 19 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵)) | 
| 20 | 1, 2 | jca 511 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | 
| 21 | 20 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | 
| 22 |  | elicc2 13452 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵))) | 
| 23 | 21, 22 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵))) | 
| 24 | 19, 23 | mpbid 232 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵)) | 
| 25 | 24 | simp2d 1144 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑡) | 
| 26 | 13, 5, 14, 25 | lesub1dd 11879 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑋) ≤ (𝑡 − 𝑋)) | 
| 27 | 24 | simp3d 1145 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≤ 𝐵) | 
| 28 | 5, 16, 14, 27 | lesub1dd 11879 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ≤ (𝐵 − 𝑋)) | 
| 29 | 15, 17, 18, 26, 28 | eliccd 45517 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) | 
| 30 | 29 | fmpttd 7135 | . . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋))) | 
| 31 | 12, 30 | feq1dd 6721 | . . . . 5
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋))) | 
| 32 | 1, 7 | resubcld 11691 | . . . . . . . 8
⊢ (𝜑 → (𝐴 − 𝑋) ∈ ℝ) | 
| 33 | 2, 7 | resubcld 11691 | . . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) | 
| 34 | 32, 33 | iccssred 13474 | . . . . . . 7
⊢ (𝜑 → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℝ) | 
| 35 |  | ax-resscn 11212 | . . . . . . 7
⊢ ℝ
⊆ ℂ | 
| 36 | 34, 35 | sstrdi 3996 | . . . . . 6
⊢ (𝜑 → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℂ) | 
| 37 | 4, 35 | sstrdi 3996 | . . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) | 
| 38 | 37 | resmptd 6058 | . . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) | 
| 39 |  | ssid 4006 | . . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ | 
| 40 |  | cncfmptid 24939 | . . . . . . . . . . . . 13
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) | 
| 41 | 39, 39, 40 | mp2an 692 | . . . . . . . . . . . 12
⊢ (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ) | 
| 42 | 41 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) | 
| 43 | 39 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ℂ
⊆ ℂ) | 
| 44 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → 𝑋 ∈
ℂ) | 
| 45 | 43, 44, 43 | constcncfg 45887 | . . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) | 
| 46 | 42, 45 | subcncf 25479 | . . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) | 
| 47 | 8, 46 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) | 
| 48 |  | rescncf 24923 | . . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) | 
| 49 | 37, 47, 48 | sylc 65 | . . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 50 | 38, 49 | eqeltrrd 2842 | . . . . . . 7
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 51 | 12, 50 | eqeltrrd 2842 | . . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 52 |  | cncfcdm 24924 | . . . . . 6
⊢ ((((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) | 
| 53 | 36, 51, 52 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) | 
| 54 | 31, 53 | mpbird 257 | . . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) | 
| 55 | 12, 54 | eqeltrd 2841 | . . 3
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) | 
| 56 |  | eqid 2737 | . . . . 5
⊢ (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) | 
| 57 | 8 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) | 
| 58 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) | 
| 59 | 57, 58 | addcomd 11463 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋)) | 
| 60 | 59 | mpteq2dva 5242 | . . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))) | 
| 61 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) | 
| 62 | 61 | addccncf 24943 | . . . . . . 7
⊢ (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) | 
| 63 | 8, 62 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) | 
| 64 | 60, 63 | eqeltrd 2841 | . . . . 5
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) | 
| 65 | 1 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐴 ∈ ℝ) | 
| 66 | 2 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐵 ∈ ℝ) | 
| 67 | 7 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑋 ∈ ℝ) | 
| 68 | 34 | sselda 3983 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ∈ ℝ) | 
| 69 | 67, 68 | readdcld 11290 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) | 
| 70 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) | 
| 71 | 32 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ∈ ℝ) | 
| 72 | 33 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐵 − 𝑋) ∈ ℝ) | 
| 73 |  | elicc2 13452 | . . . . . . . . . 10
⊢ (((𝐴 − 𝑋) ∈ ℝ ∧ (𝐵 − 𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋)))) | 
| 74 | 71, 72, 73 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋)))) | 
| 75 | 70, 74 | mpbid 232 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋))) | 
| 76 | 75 | simp2d 1144 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ≤ 𝑠) | 
| 77 | 65, 67, 68 | lesubadd2d 11862 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → ((𝐴 − 𝑋) ≤ 𝑠 ↔ 𝐴 ≤ (𝑋 + 𝑠))) | 
| 78 | 76, 77 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐴 ≤ (𝑋 + 𝑠)) | 
| 79 | 75 | simp3d 1145 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ≤ (𝐵 − 𝑋)) | 
| 80 | 67, 68, 66 | leaddsub2d 11865 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵 ↔ 𝑠 ≤ (𝐵 − 𝑋))) | 
| 81 | 79, 80 | mpbird 257 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ≤ 𝐵) | 
| 82 | 65, 66, 69, 78, 81 | eliccd 45517 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵)) | 
| 83 | 56, 64, 36, 37, 82 | cncfmptssg 45886 | . . . 4
⊢ (𝜑 → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴 − 𝑋)[,](𝐵 − 𝑋))–cn→(𝐴[,]𝐵))) | 
| 84 |  | itgsbtaddcnst.f | . . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 85 | 83, 84 | cncfcompt 45898 | . . 3
⊢ (𝜑 → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴 − 𝑋)[,](𝐵 − 𝑋))–cn→ℂ)) | 
| 86 |  | ax-1cn 11213 | . . . . . 6
⊢ 1 ∈
ℂ | 
| 87 |  | ioosscn 13449 | . . . . . 6
⊢ (𝐴(,)𝐵) ⊆ ℂ | 
| 88 |  | cncfmptc 24938 | . . . . . 6
⊢ ((1
∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑡 ∈
(𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)) | 
| 89 | 86, 87, 39, 88 | mp3an 1463 | . . . . 5
⊢ (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ) | 
| 90 | 89 | a1i 11 | . . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)) | 
| 91 |  | fconstmpt 5747 | . . . . 5
⊢ ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) | 
| 92 |  | ioombl 25600 | . . . . . . 7
⊢ (𝐴(,)𝐵) ∈ dom vol | 
| 93 | 92 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) | 
| 94 |  | volioo 25604 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | 
| 95 | 1, 2, 3, 94 | syl3anc 1373 | . . . . . . 7
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | 
| 96 | 2, 1 | resubcld 11691 | . . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) | 
| 97 | 95, 96 | eqeltrd 2841 | . . . . . 6
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ) | 
| 98 |  | 1cnd 11256 | . . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) | 
| 99 |  | iblconst 25853 | . . . . . 6
⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ)
→ ((𝐴(,)𝐵) × {1}) ∈
𝐿1) | 
| 100 | 93, 97, 98, 99 | syl3anc 1373 | . . . . 5
⊢ (𝜑 → ((𝐴(,)𝐵) × {1}) ∈
𝐿1) | 
| 101 | 91, 100 | eqeltrrid 2846 | . . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈
𝐿1) | 
| 102 | 90, 101 | elind 4200 | . . 3
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩
𝐿1)) | 
| 103 | 35 | a1i 11 | . . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) | 
| 104 | 18 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ℂ) | 
| 105 |  | tgioo4 24826 | . . . . 5
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) | 
| 106 |  | eqid 2737 | . . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 107 |  | iccntr 24843 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | 
| 108 | 20, 107 | syl 17 | . . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | 
| 109 | 103, 4, 104, 105, 106, 108 | dvmptntr 26009 | . . . 4
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡 − 𝑋)))) | 
| 110 |  | reelprrecn 11247 | . . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} | 
| 111 | 110 | a1i 11 | . . . . 5
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) | 
| 112 |  | ioossre 13448 | . . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ | 
| 113 | 112 | sseli 3979 | . . . . . . 7
⊢ (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ) | 
| 114 | 113 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ) | 
| 115 | 114 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ) | 
| 116 |  | 1cnd 11256 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ) | 
| 117 | 103 | sselda 3983 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ) | 
| 118 |  | 1cnd 11256 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 1 ∈
ℂ) | 
| 119 | 111 | dvmptid 25995 | . . . . . 6
⊢ (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1)) | 
| 120 | 112 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) | 
| 121 |  | iooretop 24786 | . . . . . . 7
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) | 
| 122 | 121 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) | 
| 123 | 111, 117,
118, 119, 120, 105, 106, 122 | dvmptres 26001 | . . . . 5
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) | 
| 124 | 8 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ) | 
| 125 |  | 0cnd 11254 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ) | 
| 126 | 8 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ ℂ) | 
| 127 |  | 0cnd 11254 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 0 ∈
ℂ) | 
| 128 | 111, 8 | dvmptc 25996 | . . . . . 6
⊢ (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0)) | 
| 129 | 111, 126,
127, 128, 120, 105, 106, 122 | dvmptres 26001 | . . . . 5
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0)) | 
| 130 | 111, 115,
116, 123, 124, 125, 129 | dvmptsub 26005 | . . . 4
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡 − 𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0))) | 
| 131 | 116 | subid1d 11609 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) =
1) | 
| 132 | 131 | mpteq2dva 5242 | . . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) | 
| 133 | 109, 130,
132 | 3eqtrd 2781 | . . 3
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) | 
| 134 |  | oveq2 7439 | . . . 4
⊢ (𝑠 = (𝑡 − 𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡 − 𝑋))) | 
| 135 | 134 | fveq2d 6910 | . . 3
⊢ (𝑠 = (𝑡 − 𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡 − 𝑋)))) | 
| 136 |  | oveq1 7438 | . . 3
⊢ (𝑡 = 𝐴 → (𝑡 − 𝑋) = (𝐴 − 𝑋)) | 
| 137 |  | oveq1 7438 | . . 3
⊢ (𝑡 = 𝐵 → (𝑡 − 𝑋) = (𝐵 − 𝑋)) | 
| 138 | 1, 2, 3, 55, 85, 102, 133, 135, 136, 137, 32, 33 | itgsubsticc 45991 | . 2
⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵]((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) d𝑡) | 
| 139 | 124, 115 | pncan3d 11623 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡 − 𝑋)) = 𝑡) | 
| 140 | 139 | fveq2d 6910 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡 − 𝑋))) = (𝐹‘𝑡)) | 
| 141 | 140 | oveq1d 7446 | . . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) = ((𝐹‘𝑡) · 1)) | 
| 142 |  | cncff 24919 | . . . . . . . 8
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | 
| 143 | 84, 142 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) | 
| 144 | 143 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | 
| 145 |  | ioossicc 13473 | . . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | 
| 146 | 145 | sseli 3979 | . . . . . . 7
⊢ (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵)) | 
| 147 | 146 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵)) | 
| 148 | 144, 147 | ffvelcdmd 7105 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑡) ∈ ℂ) | 
| 149 | 148 | mulridd 11278 | . . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝑡) · 1) = (𝐹‘𝑡)) | 
| 150 | 141, 149 | eqtrd 2777 | . . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) = (𝐹‘𝑡)) | 
| 151 | 3, 150 | ditgeq3d 45979 | . 2
⊢ (𝜑 → ⨜[𝐴 → 𝐵]((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) d𝑡 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) | 
| 152 | 138, 151 | eqtrd 2777 | 1
⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) |