Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finextfldext Structured version   Visualization version   GIF version

Theorem finextfldext 33650
Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypothesis
Ref Expression
finextfldext.1 (𝜑𝐸/FinExt𝐹)
Assertion
Ref Expression
finextfldext (𝜑𝐸/FldExt𝐹)

Proof of Theorem finextfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finextfldext.1 . . 3 (𝜑𝐸/FinExt𝐹)
2 df-finext 33629 . . . . . . 7 /FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
32relopabiv 5767 . . . . . 6 Rel /FinExt
43brrelex1i 5679 . . . . 5 (𝐸/FinExt𝐹𝐸 ∈ V)
51, 4syl 17 . . . 4 (𝜑𝐸 ∈ V)
63brrelex2i 5680 . . . . 5 (𝐸/FinExt𝐹𝐹 ∈ V)
71, 6syl 17 . . . 4 (𝜑𝐹 ∈ V)
8 breq12 5100 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒/FldExt𝑓𝐸/FldExt𝐹))
9 oveq12 7362 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹))
109eleq1d 2813 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0))
118, 10anbi12d 632 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
1211, 2brabga 5481 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
135, 7, 12syl2anc 584 . . 3 (𝜑 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
141, 13mpbid 232 . 2 (𝜑 → (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))
1514simpld 494 1 (𝜑𝐸/FldExt𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095  (class class class)co 7353  0cn0 12403  /FldExtcfldext 33624  /FinExtcfinext 33625  [:]cextdg 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-iota 6442  df-fv 6494  df-ov 7356  df-finext 33629
This theorem is referenced by:  finextalg  33684
  Copyright terms: Public domain W3C validator