| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finextfldext | Structured version Visualization version GIF version | ||
| Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| finextfldext.1 | ⊢ (𝜑 → 𝐸/FinExt𝐹) |
| Ref | Expression |
|---|---|
| finextfldext | ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finextfldext.1 | . . 3 ⊢ (𝜑 → 𝐸/FinExt𝐹) | |
| 2 | df-finext 33648 | . . . . . . 7 ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | |
| 3 | 2 | relopabiv 5755 | . . . . . 6 ⊢ Rel /FinExt |
| 4 | 3 | brrelex1i 5667 | . . . . 5 ⊢ (𝐸/FinExt𝐹 → 𝐸 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 6 | 3 | brrelex2i 5668 | . . . . 5 ⊢ (𝐸/FinExt𝐹 → 𝐹 ∈ V) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | breq12 5091 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒/FldExt𝑓 ↔ 𝐸/FldExt𝐹)) | |
| 9 | oveq12 7350 | . . . . . . 7 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹)) | |
| 10 | 9 | eleq1d 2816 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 12 | 11, 2 | brabga 5469 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 13 | 5, 7, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)) |
| 15 | 14 | simpld 494 | 1 ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 (class class class)co 7341 ℕ0cn0 12376 /FldExtcfldext 33643 /FinExtcfinext 33644 [:]cextdg 33645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-iota 6432 df-fv 6484 df-ov 7344 df-finext 33648 |
| This theorem is referenced by: finextalg 33703 |
| Copyright terms: Public domain | W3C validator |