| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finextfldext | Structured version Visualization version GIF version | ||
| Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| finextfldext.1 | ⊢ (𝜑 → 𝐸/FinExt𝐹) |
| Ref | Expression |
|---|---|
| finextfldext | ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finextfldext.1 | . . 3 ⊢ (𝜑 → 𝐸/FinExt𝐹) | |
| 2 | df-finext 33629 | . . . . . . 7 ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | |
| 3 | 2 | relopabiv 5767 | . . . . . 6 ⊢ Rel /FinExt |
| 4 | 3 | brrelex1i 5679 | . . . . 5 ⊢ (𝐸/FinExt𝐹 → 𝐸 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 6 | 3 | brrelex2i 5680 | . . . . 5 ⊢ (𝐸/FinExt𝐹 → 𝐹 ∈ V) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | breq12 5100 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒/FldExt𝑓 ↔ 𝐸/FldExt𝐹)) | |
| 9 | oveq12 7362 | . . . . . . 7 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹)) | |
| 10 | 9 | eleq1d 2813 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 12 | 11, 2 | brabga 5481 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 13 | 5, 7, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)) |
| 15 | 14 | simpld 494 | 1 ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 (class class class)co 7353 ℕ0cn0 12403 /FldExtcfldext 33624 /FinExtcfinext 33625 [:]cextdg 33626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-iota 6442 df-fv 6494 df-ov 7356 df-finext 33629 |
| This theorem is referenced by: finextalg 33684 |
| Copyright terms: Public domain | W3C validator |