| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finextfldext | Structured version Visualization version GIF version | ||
| Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| finextfldext.1 | ⊢ (𝜑 → 𝐸/FinExt𝐹) |
| Ref | Expression |
|---|---|
| finextfldext | ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finextfldext.1 | . . 3 ⊢ (𝜑 → 𝐸/FinExt𝐹) | |
| 2 | df-finext 33728 | . . . . . . 7 ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | |
| 3 | 2 | relopabiv 5766 | . . . . . 6 ⊢ Rel /FinExt |
| 4 | 3 | brrelex1i 5677 | . . . . 5 ⊢ (𝐸/FinExt𝐹 → 𝐸 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 6 | 3 | brrelex2i 5678 | . . . . 5 ⊢ (𝐸/FinExt𝐹 → 𝐹 ∈ V) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | breq12 5100 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒/FldExt𝑓 ↔ 𝐸/FldExt𝐹)) | |
| 9 | oveq12 7364 | . . . . . . 7 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹)) | |
| 10 | 9 | eleq1d 2818 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 12 | 11, 2 | brabga 5479 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 13 | 5, 7, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)) |
| 15 | 14 | simpld 494 | 1 ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 (class class class)co 7355 ℕ0cn0 12392 /FldExtcfldext 33723 /FinExtcfinext 33724 [:]cextdg 33725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-iota 6445 df-fv 6497 df-ov 7358 df-finext 33728 |
| This theorem is referenced by: finextalg 33783 |
| Copyright terms: Public domain | W3C validator |