Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finextfldext Structured version   Visualization version   GIF version

Theorem finextfldext 33669
Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypothesis
Ref Expression
finextfldext.1 (𝜑𝐸/FinExt𝐹)
Assertion
Ref Expression
finextfldext (𝜑𝐸/FldExt𝐹)

Proof of Theorem finextfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finextfldext.1 . . 3 (𝜑𝐸/FinExt𝐹)
2 df-finext 33648 . . . . . . 7 /FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
32relopabiv 5755 . . . . . 6 Rel /FinExt
43brrelex1i 5667 . . . . 5 (𝐸/FinExt𝐹𝐸 ∈ V)
51, 4syl 17 . . . 4 (𝜑𝐸 ∈ V)
63brrelex2i 5668 . . . . 5 (𝐸/FinExt𝐹𝐹 ∈ V)
71, 6syl 17 . . . 4 (𝜑𝐹 ∈ V)
8 breq12 5091 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒/FldExt𝑓𝐸/FldExt𝐹))
9 oveq12 7350 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹))
109eleq1d 2816 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0))
118, 10anbi12d 632 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
1211, 2brabga 5469 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
135, 7, 12syl2anc 584 . . 3 (𝜑 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
141, 13mpbid 232 . 2 (𝜑 → (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))
1514simpld 494 1 (𝜑𝐸/FldExt𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5086  (class class class)co 7341  0cn0 12376  /FldExtcfldext 33643  /FinExtcfinext 33644  [:]cextdg 33645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-iota 6432  df-fv 6484  df-ov 7344  df-finext 33648
This theorem is referenced by:  finextalg  33703
  Copyright terms: Public domain W3C validator