Proof of Theorem extdgmul
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾)) |
2 | | eqid 2738 |
. . 3
⊢
((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) |
3 | | eqid 2738 |
. . 3
⊢
((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s
(Base‘𝐹)))‘(Base‘𝐾)) |
4 | | eqid 2738 |
. . 3
⊢ (𝐸 ↾s
(Base‘𝐹)) = (𝐸 ↾s
(Base‘𝐹)) |
5 | | eqid 2738 |
. . 3
⊢ (𝐸 ↾s
(Base‘𝐾)) = (𝐸 ↾s
(Base‘𝐾)) |
6 | | simpl 483 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐹) |
7 | | fldextfld1 31724 |
. . . . 5
⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ Field) |
9 | | isfld 20000 |
. . . . 5
⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) |
10 | 9 | simplbi 498 |
. . . 4
⊢ (𝐸 ∈ Field → 𝐸 ∈
DivRing) |
11 | 8, 10 | syl 17 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ DivRing) |
12 | | fldextfld1 31724 |
. . . . . . . 8
⊢ (𝐹/FldExt𝐾 → 𝐹 ∈ Field) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ Field) |
14 | | brfldext 31722 |
. . . . . . 7
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
15 | 8, 13, 14 | syl2anc 584 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
16 | 6, 15 | mpbid 231 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
17 | 16 | simpld 495 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
18 | | isfld 20000 |
. . . . . 6
⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) |
19 | 18 | simplbi 498 |
. . . . 5
⊢ (𝐹 ∈ Field → 𝐹 ∈
DivRing) |
20 | 13, 19 | syl 17 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ DivRing) |
21 | 17, 20 | eqeltrrd 2840 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐹)) ∈
DivRing) |
22 | | fldexttr 31733 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) |
23 | | fldextfld2 31725 |
. . . . . . . 8
⊢ (𝐹/FldExt𝐾 → 𝐾 ∈ Field) |
24 | 23 | adantl 482 |
. . . . . . 7
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ Field) |
25 | | brfldext 31722 |
. . . . . . 7
⊢ ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
26 | 8, 24, 25 | syl2anc 584 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
27 | 22, 26 | mpbid 231 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))) |
28 | 27 | simpld 495 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 = (𝐸 ↾s (Base‘𝐾))) |
29 | | isfld 20000 |
. . . . . 6
⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
30 | 29 | simplbi 498 |
. . . . 5
⊢ (𝐾 ∈ Field → 𝐾 ∈
DivRing) |
31 | 24, 30 | syl 17 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ DivRing) |
32 | 28, 31 | eqeltrrd 2840 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐾)) ∈
DivRing) |
33 | 16 | simprd 496 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
34 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
35 | 34 | fldextsubrg 31726 |
. . . . 5
⊢ (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
36 | 35 | adantl 482 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
37 | 17 | fveq2d 6778 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
38 | 36, 37 | eleqtrd 2841 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
39 | 1, 2, 3, 4, 5, 11,
21, 32, 33, 38 | fedgmul 31712 |
. 2
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg
‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e
(dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
40 | | extdgval 31729 |
. . 3
⊢ (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) |
41 | 22, 40 | syl 17 |
. 2
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) |
42 | | extdgval 31729 |
. . . 4
⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
43 | 6, 42 | syl 17 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
44 | | extdgval 31729 |
. . . . 5
⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) |
45 | 44 | adantl 482 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) |
46 | 17 | fveq2d 6778 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸 ↾s
(Base‘𝐹)))) |
47 | 46 | fveq1d 6776 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s
(Base‘𝐹)))‘(Base‘𝐾))) |
48 | 47 | fveq2d 6778 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg
‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸 ↾s
(Base‘𝐹)))‘(Base‘𝐾)))) |
49 | 45, 48 | eqtrd 2778 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸 ↾s
(Base‘𝐹)))‘(Base‘𝐾)))) |
50 | 43, 49 | oveq12d 7293 |
. 2
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e
(dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
51 | 39, 41, 50 | 3eqtr4d 2788 |
1
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |