| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgmul | Structured version Visualization version GIF version | ||
| Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdgmul | ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾)) | |
| 2 | eqid 2735 | . . 3 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) | |
| 3 | eqid 2735 | . . 3 ⊢ ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) | |
| 4 | eqid 2735 | . . 3 ⊢ (𝐸 ↾s (Base‘𝐹)) = (𝐸 ↾s (Base‘𝐹)) | |
| 5 | eqid 2735 | . . 3 ⊢ (𝐸 ↾s (Base‘𝐾)) = (𝐸 ↾s (Base‘𝐾)) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐹) | |
| 7 | fldextfld1 33689 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ Field) |
| 9 | isfld 20700 | . . . . 5 ⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) | |
| 10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐸 ∈ Field → 𝐸 ∈ DivRing) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ DivRing) |
| 12 | fldextfld1 33689 | . . . . . . . 8 ⊢ (𝐹/FldExt𝐾 → 𝐹 ∈ Field) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ Field) |
| 14 | brfldext 33687 | . . . . . . 7 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
| 15 | 8, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 16 | 6, 15 | mpbid 232 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 17 | 16 | simpld 494 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| 18 | isfld 20700 | . . . . . 6 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 19 | 18 | simplbi 497 | . . . . 5 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ DivRing) |
| 21 | 17, 20 | eqeltrrd 2835 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐹)) ∈ DivRing) |
| 22 | fldexttr 33700 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | |
| 23 | fldextfld2 33690 | . . . . . . . 8 ⊢ (𝐹/FldExt𝐾 → 𝐾 ∈ Field) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ Field) |
| 25 | brfldext 33687 | . . . . . . 7 ⊢ ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) | |
| 26 | 8, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
| 27 | 22, 26 | mpbid 232 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))) |
| 28 | 27 | simpld 494 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 = (𝐸 ↾s (Base‘𝐾))) |
| 29 | isfld 20700 | . . . . . 6 ⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) | |
| 30 | 29 | simplbi 497 | . . . . 5 ⊢ (𝐾 ∈ Field → 𝐾 ∈ DivRing) |
| 31 | 24, 30 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ DivRing) |
| 32 | 28, 31 | eqeltrrd 2835 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐾)) ∈ DivRing) |
| 33 | 16 | simprd 495 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
| 34 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 35 | 34 | fldextsubrg 33691 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
| 37 | 17 | fveq2d 6880 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
| 38 | 36, 37 | eleqtrd 2836 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
| 39 | 1, 2, 3, 4, 5, 11, 21, 32, 33, 38 | fedgmul 33671 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
| 40 | extdgval 33695 | . . 3 ⊢ (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) | |
| 41 | 22, 40 | syl 17 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) |
| 42 | extdgval 33695 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 43 | 6, 42 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 44 | extdgval 33695 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) | |
| 45 | 44 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) |
| 46 | 17 | fveq2d 6880 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸 ↾s (Base‘𝐹)))) |
| 47 | 46 | fveq1d 6878 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))) |
| 48 | 47 | fveq2d 6880 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)))) |
| 49 | 45, 48 | eqtrd 2770 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)))) |
| 50 | 43, 49 | oveq12d 7423 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
| 51 | 39, 41, 50 | 3eqtr4d 2780 | 1 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ·e cxmu 13127 Basecbs 17228 ↾s cress 17251 CRingccrg 20194 SubRingcsubrg 20529 DivRingcdr 20689 Fieldcfield 20690 subringAlg csra 21129 dimcldim 33638 /FldExtcfldext 33678 [:]cextdg 33681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-r1 9778 df-rank 9779 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-xmul 13130 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ocomp 17292 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-mri 17600 df-acs 17601 df-proset 18306 df-drs 18307 df-poset 18325 df-ipo 18538 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-nzr 20473 df-subrng 20506 df-subrg 20530 df-drng 20691 df-field 20692 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lmhm 20980 df-lbs 21033 df-lvec 21061 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-uvc 21743 df-lindf 21766 df-linds 21767 df-dim 33639 df-fldext 33682 df-extdg 33683 |
| This theorem is referenced by: finexttrb 33706 fldextrspundglemul 33720 fldextrspundgdvdslem 33721 fldextrspundgdvds 33722 fldext2rspun 33723 fldext2chn 33762 constrext2chnlem 33784 |
| Copyright terms: Public domain | W3C validator |