Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgmul Structured version   Visualization version   GIF version

Theorem extdgmul 33666
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
extdgmul ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))

Proof of Theorem extdgmul
StepHypRef Expression
1 eqid 2730 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾))
2 eqid 2730 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
3 eqid 2730 . . 3 ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))
4 eqid 2730 . . 3 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
5 eqid 2730 . . 3 (𝐸s (Base‘𝐾)) = (𝐸s (Base‘𝐾))
6 simpl 482 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
7 fldextfld1 33650 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
86, 7syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
9 isfld 20648 . . . . 5 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
109simplbi 497 . . . 4 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
118, 10syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ DivRing)
12 fldextfld1 33650 . . . . . . . 8 (𝐹/FldExt𝐾𝐹 ∈ Field)
1312adantl 481 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
14 brfldext 33648 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
158, 13, 14syl2anc 584 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
166, 15mpbid 232 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1716simpld 494 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
18 isfld 20648 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
1918simplbi 497 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
2013, 19syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ DivRing)
2117, 20eqeltrrd 2830 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐹)) ∈ DivRing)
22 fldexttr 33661 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
23 fldextfld2 33651 . . . . . . . 8 (𝐹/FldExt𝐾𝐾 ∈ Field)
2423adantl 481 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
25 brfldext 33648 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
268, 24, 25syl2anc 584 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
2722, 26mpbid 232 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))
2827simpld 494 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
29 isfld 20648 . . . . . 6 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
3029simplbi 497 . . . . 5 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
3124, 30syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ DivRing)
3228, 31eqeltrrd 2830 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐾)) ∈ DivRing)
3316simprd 495 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
34 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3534fldextsubrg 33652 . . . . 5 (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹))
3635adantl 481 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
3717fveq2d 6821 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3836, 37eleqtrd 2831 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
391, 2, 3, 4, 5, 11, 21, 32, 33, 38fedgmul 33634 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
40 extdgval 33656 . . 3 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
4122, 40syl 17 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
42 extdgval 33656 . . . 4 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
436, 42syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
44 extdgval 33656 . . . . 5 (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4544adantl 481 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4617fveq2d 6821 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸s (Base‘𝐹))))
4746fveq1d 6819 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))
4847fveq2d 6821 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
4945, 48eqtrd 2765 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
5043, 49oveq12d 7359 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
5139, 41, 503eqtr4d 2775 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341   ·e cxmu 13002  Basecbs 17112  s cress 17133  CRingccrg 20145  SubRingcsubrg 20477  DivRingcdr 20637  Fieldcfield 20638  subringAlg csra 21098  dimcldim 33601  /FldExtcfldext 33641  [:]cextdg 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-r1 9649  df-rank 9650  df-dju 9786  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-xmul 13005  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ocomp 17174  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-mri 17482  df-acs 17483  df-proset 18192  df-drs 18193  df-poset 18211  df-ipo 18426  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-nzr 20421  df-subrng 20454  df-subrg 20478  df-drng 20639  df-field 20640  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lmhm 20949  df-lbs 21002  df-lvec 21030  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-uvc 21713  df-lindf 21736  df-linds 21737  df-dim 33602  df-fldext 33644  df-extdg 33645
This theorem is referenced by:  finexttrb  33668  fldextrspundglemul  33682  fldextrspundgdvdslem  33683  fldextrspundgdvds  33684  fldext2rspun  33685  fldext2chn  33731  constrext2chnlem  33753
  Copyright terms: Public domain W3C validator