| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgmul | Structured version Visualization version GIF version | ||
| Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdgmul | ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾)) | |
| 2 | eqid 2730 | . . 3 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) | |
| 3 | eqid 2730 | . . 3 ⊢ ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) | |
| 4 | eqid 2730 | . . 3 ⊢ (𝐸 ↾s (Base‘𝐹)) = (𝐸 ↾s (Base‘𝐹)) | |
| 5 | eqid 2730 | . . 3 ⊢ (𝐸 ↾s (Base‘𝐾)) = (𝐸 ↾s (Base‘𝐾)) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐹) | |
| 7 | fldextfld1 33650 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ Field) |
| 9 | isfld 20648 | . . . . 5 ⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) | |
| 10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐸 ∈ Field → 𝐸 ∈ DivRing) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ DivRing) |
| 12 | fldextfld1 33650 | . . . . . . . 8 ⊢ (𝐹/FldExt𝐾 → 𝐹 ∈ Field) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ Field) |
| 14 | brfldext 33648 | . . . . . . 7 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
| 15 | 8, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 16 | 6, 15 | mpbid 232 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 17 | 16 | simpld 494 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| 18 | isfld 20648 | . . . . . 6 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 19 | 18 | simplbi 497 | . . . . 5 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ DivRing) |
| 21 | 17, 20 | eqeltrrd 2830 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐹)) ∈ DivRing) |
| 22 | fldexttr 33661 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | |
| 23 | fldextfld2 33651 | . . . . . . . 8 ⊢ (𝐹/FldExt𝐾 → 𝐾 ∈ Field) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ Field) |
| 25 | brfldext 33648 | . . . . . . 7 ⊢ ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) | |
| 26 | 8, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
| 27 | 22, 26 | mpbid 232 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))) |
| 28 | 27 | simpld 494 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 = (𝐸 ↾s (Base‘𝐾))) |
| 29 | isfld 20648 | . . . . . 6 ⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) | |
| 30 | 29 | simplbi 497 | . . . . 5 ⊢ (𝐾 ∈ Field → 𝐾 ∈ DivRing) |
| 31 | 24, 30 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ DivRing) |
| 32 | 28, 31 | eqeltrrd 2830 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐾)) ∈ DivRing) |
| 33 | 16 | simprd 495 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
| 34 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 35 | 34 | fldextsubrg 33652 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
| 37 | 17 | fveq2d 6821 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
| 38 | 36, 37 | eleqtrd 2831 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
| 39 | 1, 2, 3, 4, 5, 11, 21, 32, 33, 38 | fedgmul 33634 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
| 40 | extdgval 33656 | . . 3 ⊢ (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) | |
| 41 | 22, 40 | syl 17 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) |
| 42 | extdgval 33656 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 43 | 6, 42 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 44 | extdgval 33656 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) | |
| 45 | 44 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) |
| 46 | 17 | fveq2d 6821 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸 ↾s (Base‘𝐹)))) |
| 47 | 46 | fveq1d 6819 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))) |
| 48 | 47 | fveq2d 6821 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)))) |
| 49 | 45, 48 | eqtrd 2765 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)))) |
| 50 | 43, 49 | oveq12d 7359 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
| 51 | 39, 41, 50 | 3eqtr4d 2775 | 1 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 ·e cxmu 13002 Basecbs 17112 ↾s cress 17133 CRingccrg 20145 SubRingcsubrg 20477 DivRingcdr 20637 Fieldcfield 20638 subringAlg csra 21098 dimcldim 33601 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-r1 9649 df-rank 9650 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-xmul 13005 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ocomp 17174 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-mri 17482 df-acs 17483 df-proset 18192 df-drs 18193 df-poset 18211 df-ipo 18426 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-nzr 20421 df-subrng 20454 df-subrg 20478 df-drng 20639 df-field 20640 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lbs 21002 df-lvec 21030 df-sra 21100 df-rgmod 21101 df-dsmm 21662 df-frlm 21677 df-uvc 21713 df-lindf 21736 df-linds 21737 df-dim 33602 df-fldext 33644 df-extdg 33645 |
| This theorem is referenced by: finexttrb 33668 fldextrspundglemul 33682 fldextrspundgdvdslem 33683 fldextrspundgdvds 33684 fldext2rspun 33685 fldext2chn 33731 constrext2chnlem 33753 |
| Copyright terms: Public domain | W3C validator |