Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgmul Structured version   Visualization version   GIF version

Theorem extdgmul 31736
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
extdgmul ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))

Proof of Theorem extdgmul
StepHypRef Expression
1 eqid 2738 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾))
2 eqid 2738 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
3 eqid 2738 . . 3 ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))
4 eqid 2738 . . 3 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
5 eqid 2738 . . 3 (𝐸s (Base‘𝐾)) = (𝐸s (Base‘𝐾))
6 simpl 483 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
7 fldextfld1 31724 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
86, 7syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
9 isfld 20000 . . . . 5 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
109simplbi 498 . . . 4 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
118, 10syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ DivRing)
12 fldextfld1 31724 . . . . . . . 8 (𝐹/FldExt𝐾𝐹 ∈ Field)
1312adantl 482 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
14 brfldext 31722 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
158, 13, 14syl2anc 584 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
166, 15mpbid 231 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1716simpld 495 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
18 isfld 20000 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
1918simplbi 498 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
2013, 19syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ DivRing)
2117, 20eqeltrrd 2840 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐹)) ∈ DivRing)
22 fldexttr 31733 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
23 fldextfld2 31725 . . . . . . . 8 (𝐹/FldExt𝐾𝐾 ∈ Field)
2423adantl 482 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
25 brfldext 31722 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
268, 24, 25syl2anc 584 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
2722, 26mpbid 231 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))
2827simpld 495 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
29 isfld 20000 . . . . . 6 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
3029simplbi 498 . . . . 5 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
3124, 30syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ DivRing)
3228, 31eqeltrrd 2840 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐾)) ∈ DivRing)
3316simprd 496 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
34 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3534fldextsubrg 31726 . . . . 5 (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹))
3635adantl 482 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
3717fveq2d 6778 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3836, 37eleqtrd 2841 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
391, 2, 3, 4, 5, 11, 21, 32, 33, 38fedgmul 31712 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
40 extdgval 31729 . . 3 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
4122, 40syl 17 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
42 extdgval 31729 . . . 4 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
436, 42syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
44 extdgval 31729 . . . . 5 (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4544adantl 482 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4617fveq2d 6778 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸s (Base‘𝐹))))
4746fveq1d 6776 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))
4847fveq2d 6778 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
4945, 48eqtrd 2778 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
5043, 49oveq12d 7293 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
5139, 41, 503eqtr4d 2788 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275   ·e cxmu 12847  Basecbs 16912  s cress 16941  CRingccrg 19784  DivRingcdr 19991  Fieldcfield 19992  SubRingcsubrg 20020  subringAlg csra 20430  dimcldim 31684  /FldExtcfldext 31713  [:]cextdg 31716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-r1 9522  df-rank 9523  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-xmul 12850  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ocomp 16983  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-mri 17297  df-acs 17298  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-field 19994  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lbs 20337  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-dsmm 20939  df-frlm 20954  df-uvc 20990  df-lindf 21013  df-linds 21014  df-dim 31685  df-fldext 31717  df-extdg 31718
This theorem is referenced by:  finexttrb  31737
  Copyright terms: Public domain W3C validator