Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgmul Structured version   Visualization version   GIF version

Theorem extdgmul 31061
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
extdgmul ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))

Proof of Theorem extdgmul
StepHypRef Expression
1 eqid 2821 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾))
2 eqid 2821 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
3 eqid 2821 . . 3 ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))
4 eqid 2821 . . 3 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
5 eqid 2821 . . 3 (𝐸s (Base‘𝐾)) = (𝐸s (Base‘𝐾))
6 simpl 485 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
7 fldextfld1 31049 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
86, 7syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
9 isfld 19494 . . . . 5 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
109simplbi 500 . . . 4 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
118, 10syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ DivRing)
12 fldextfld1 31049 . . . . . . . 8 (𝐹/FldExt𝐾𝐹 ∈ Field)
1312adantl 484 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
14 brfldext 31047 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
158, 13, 14syl2anc 586 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
166, 15mpbid 234 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1716simpld 497 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
18 isfld 19494 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
1918simplbi 500 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
2013, 19syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ DivRing)
2117, 20eqeltrrd 2914 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐹)) ∈ DivRing)
22 fldexttr 31058 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
23 fldextfld2 31050 . . . . . . . 8 (𝐹/FldExt𝐾𝐾 ∈ Field)
2423adantl 484 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
25 brfldext 31047 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
268, 24, 25syl2anc 586 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
2722, 26mpbid 234 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))
2827simpld 497 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
29 isfld 19494 . . . . . 6 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
3029simplbi 500 . . . . 5 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
3124, 30syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ DivRing)
3228, 31eqeltrrd 2914 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐾)) ∈ DivRing)
3316simprd 498 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
34 eqid 2821 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3534fldextsubrg 31051 . . . . 5 (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹))
3635adantl 484 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
3717fveq2d 6660 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3836, 37eleqtrd 2915 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
391, 2, 3, 4, 5, 11, 21, 32, 33, 38fedgmul 31037 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
40 extdgval 31054 . . 3 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
4122, 40syl 17 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
42 extdgval 31054 . . . 4 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
436, 42syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
44 extdgval 31054 . . . . 5 (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4544adantl 484 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4617fveq2d 6660 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸s (Base‘𝐹))))
4746fveq1d 6658 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))
4847fveq2d 6660 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
4945, 48eqtrd 2856 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
5043, 49oveq12d 7160 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
5139, 41, 503eqtr4d 2866 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5052  cfv 6341  (class class class)co 7142   ·e cxmu 12493  Basecbs 16466  s cress 16467  CRingccrg 19281  DivRingcdr 19485  Fieldcfield 19486  SubRingcsubrg 19514  subringAlg csra 19923  dimcldim 31009  /FldExtcfldext 31038  [:]cextdg 31041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-reg 9042  ax-inf2 9090  ax-ac2 9871  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-rpss 7435  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-tpos 7878  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-sup 8892  df-oi 8960  df-r1 9179  df-rank 9180  df-dju 9316  df-card 9354  df-acn 9357  df-ac 9528  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-xnn0 11955  df-z 11969  df-dec 12086  df-uz 12231  df-xmul 12496  df-fz 12883  df-fzo 13024  df-seq 13360  df-hash 13681  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ocomp 16569  df-ds 16570  df-hom 16572  df-cco 16573  df-0g 16698  df-gsum 16699  df-prds 16704  df-pws 16706  df-mre 16840  df-mrc 16841  df-mri 16842  df-acs 16843  df-proset 17521  df-drs 17522  df-poset 17539  df-ipo 17745  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-mhm 17939  df-submnd 17940  df-grp 18089  df-minusg 18090  df-sbg 18091  df-mulg 18208  df-subg 18259  df-ghm 18339  df-cntz 18430  df-cmn 18891  df-abl 18892  df-mgp 19223  df-ur 19235  df-ring 19282  df-oppr 19356  df-dvdsr 19374  df-unit 19375  df-invr 19405  df-drng 19487  df-field 19488  df-subrg 19516  df-lmod 19619  df-lss 19687  df-lsp 19727  df-lmhm 19777  df-lbs 19830  df-lvec 19858  df-sra 19927  df-rgmod 19928  df-nzr 20014  df-dsmm 20859  df-frlm 20874  df-uvc 20910  df-lindf 20933  df-linds 20934  df-dim 31010  df-fldext 31042  df-extdg 31043
This theorem is referenced by:  finexttrb  31062
  Copyright terms: Public domain W3C validator