Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgmul Structured version   Visualization version   GIF version

Theorem extdgmul 33659
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
extdgmul ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))

Proof of Theorem extdgmul
StepHypRef Expression
1 eqid 2729 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾))
2 eqid 2729 . . 3 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
3 eqid 2729 . . 3 ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))
4 eqid 2729 . . 3 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
5 eqid 2729 . . 3 (𝐸s (Base‘𝐾)) = (𝐸s (Base‘𝐾))
6 simpl 482 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
7 fldextfld1 33643 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
86, 7syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
9 isfld 20649 . . . . 5 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
109simplbi 497 . . . 4 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
118, 10syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ DivRing)
12 fldextfld1 33643 . . . . . . . 8 (𝐹/FldExt𝐾𝐹 ∈ Field)
1312adantl 481 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
14 brfldext 33641 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
158, 13, 14syl2anc 584 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
166, 15mpbid 232 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1716simpld 494 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
18 isfld 20649 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
1918simplbi 497 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
2013, 19syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ DivRing)
2117, 20eqeltrrd 2829 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐹)) ∈ DivRing)
22 fldexttr 33654 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
23 fldextfld2 33644 . . . . . . . 8 (𝐹/FldExt𝐾𝐾 ∈ Field)
2423adantl 481 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
25 brfldext 33641 . . . . . . 7 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
268, 24, 25syl2anc 584 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
2722, 26mpbid 232 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))
2827simpld 494 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
29 isfld 20649 . . . . . 6 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
3029simplbi 497 . . . . 5 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
3124, 30syl 17 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ DivRing)
3228, 31eqeltrrd 2829 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s (Base‘𝐾)) ∈ DivRing)
3316simprd 495 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
34 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3534fldextsubrg 33645 . . . . 5 (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹))
3635adantl 481 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
3717fveq2d 6862 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3836, 37eleqtrd 2830 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
391, 2, 3, 4, 5, 11, 21, 32, 33, 38fedgmul 33627 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
40 extdgval 33649 . . 3 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
4122, 40syl 17 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))))
42 extdgval 33649 . . . 4 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
436, 42syl 17 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
44 extdgval 33649 . . . . 5 (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4544adantl 481 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))))
4617fveq2d 6862 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸s (Base‘𝐹))))
4746fveq1d 6860 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))
4847fveq2d 6862 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
4945, 48eqtrd 2764 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾))))
5043, 49oveq12d 7405 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸s (Base‘𝐹)))‘(Base‘𝐾)))))
5139, 41, 503eqtr4d 2774 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387   ·e cxmu 13071  Basecbs 17179  s cress 17200  CRingccrg 20143  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  subringAlg csra 21078  dimcldim 33594  /FldExtcfldext 33634  [:]cextdg 33636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-xmul 13074  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ocomp 17241  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-dim 33595  df-fldext 33637  df-extdg 33638
This theorem is referenced by:  finexttrb  33660  fldextrspundglemul  33674  fldextrspundgdvdslem  33675  fldextrspundgdvds  33676  fldext2rspun  33677  fldext2chn  33718  constrext2chnlem  33740
  Copyright terms: Public domain W3C validator