| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgmul | Structured version Visualization version GIF version | ||
| Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdgmul | ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐾)) = ((subringAlg ‘𝐸)‘(Base‘𝐾)) | |
| 2 | eqid 2730 | . . 3 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) | |
| 3 | eqid 2730 | . . 3 ⊢ ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)) | |
| 4 | eqid 2730 | . . 3 ⊢ (𝐸 ↾s (Base‘𝐹)) = (𝐸 ↾s (Base‘𝐹)) | |
| 5 | eqid 2730 | . . 3 ⊢ (𝐸 ↾s (Base‘𝐾)) = (𝐸 ↾s (Base‘𝐾)) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐹) | |
| 7 | fldextfld1 33650 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ Field) |
| 9 | isfld 20656 | . . . . 5 ⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) | |
| 10 | 9 | simplbi 497 | . . . 4 ⊢ (𝐸 ∈ Field → 𝐸 ∈ DivRing) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ DivRing) |
| 12 | fldextfld1 33650 | . . . . . . . 8 ⊢ (𝐹/FldExt𝐾 → 𝐹 ∈ Field) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ Field) |
| 14 | brfldext 33648 | . . . . . . 7 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
| 15 | 8, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 16 | 6, 15 | mpbid 232 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 17 | 16 | simpld 494 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| 18 | isfld 20656 | . . . . . 6 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 19 | 18 | simplbi 497 | . . . . 5 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ DivRing) |
| 21 | 17, 20 | eqeltrrd 2830 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐹)) ∈ DivRing) |
| 22 | fldexttr 33661 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | |
| 23 | fldextfld2 33651 | . . . . . . . 8 ⊢ (𝐹/FldExt𝐾 → 𝐾 ∈ Field) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ Field) |
| 25 | brfldext 33648 | . . . . . . 7 ⊢ ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) | |
| 26 | 8, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
| 27 | 22, 26 | mpbid 232 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))) |
| 28 | 27 | simpld 494 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 = (𝐸 ↾s (Base‘𝐾))) |
| 29 | isfld 20656 | . . . . . 6 ⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) | |
| 30 | 29 | simplbi 497 | . . . . 5 ⊢ (𝐾 ∈ Field → 𝐾 ∈ DivRing) |
| 31 | 24, 30 | syl 17 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ DivRing) |
| 32 | 28, 31 | eqeltrrd 2830 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s (Base‘𝐾)) ∈ DivRing) |
| 33 | 16 | simprd 495 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
| 34 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 35 | 34 | fldextsubrg 33652 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
| 37 | 17 | fveq2d 6865 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
| 38 | 36, 37 | eleqtrd 2831 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
| 39 | 1, 2, 3, 4, 5, 11, 21, 32, 33, 38 | fedgmul 33634 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾))) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
| 40 | extdgval 33656 | . . 3 ⊢ (𝐸/FldExt𝐾 → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) | |
| 41 | 22, 40 | syl 17 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐾)))) |
| 42 | extdgval 33656 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 43 | 6, 42 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 44 | extdgval 33656 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) | |
| 45 | 44 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾)))) |
| 46 | 17 | fveq2d 6865 | . . . . . 6 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (subringAlg ‘𝐹) = (subringAlg ‘(𝐸 ↾s (Base‘𝐹)))) |
| 47 | 46 | fveq1d 6863 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((subringAlg ‘𝐹)‘(Base‘𝐾)) = ((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))) |
| 48 | 47 | fveq2d 6865 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (dim‘((subringAlg ‘𝐹)‘(Base‘𝐾))) = (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)))) |
| 49 | 45, 48 | eqtrd 2765 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) = (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾)))) |
| 50 | 43, 49 | oveq12d 7408 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) = ((dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ·e (dim‘((subringAlg ‘(𝐸 ↾s (Base‘𝐹)))‘(Base‘𝐾))))) |
| 51 | 39, 41, 50 | 3eqtr4d 2775 | 1 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ·e cxmu 13078 Basecbs 17186 ↾s cress 17207 CRingccrg 20150 SubRingcsubrg 20485 DivRingcdr 20645 Fieldcfield 20646 subringAlg csra 21085 dimcldim 33601 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-r1 9724 df-rank 9725 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-xmul 13081 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ocomp 17248 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-mri 17556 df-acs 17557 df-proset 18262 df-drs 18263 df-poset 18281 df-ipo 18494 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lbs 20989 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-uvc 21699 df-lindf 21722 df-linds 21723 df-dim 33602 df-fldext 33644 df-extdg 33645 |
| This theorem is referenced by: finexttrb 33667 fldextrspundglemul 33681 fldextrspundgdvdslem 33682 fldextrspundgdvds 33683 fldext2rspun 33684 fldext2chn 33725 constrext2chnlem 33747 |
| Copyright terms: Public domain | W3C validator |