MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk6 Structured version   Visualization version   GIF version

Theorem numclwwlk6 27822
Description: For a prime divisor 𝑃 of 𝐾 − 1, the total number of closed walks of length 𝑃 in a 𝐾-regular friendship graph is equal modulo 𝑃 to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.) (Proof shortened by AV, 7-Mar-2022.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk6 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))

Proof of Theorem numclwwlk6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk6.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21finrusgrfusgr 26913 . . . . 5 ((𝐺RegUSGraph𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
323adant2 1122 . . . 4 ((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
4 prmnn 15793 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
54adantr 474 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
61numclwwlk4 27818 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℕ) → (♯‘(𝑃 ClWWalksN 𝐺)) = Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)))
73, 5, 6syl2an 589 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑃 ClWWalksN 𝐺)) = Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)))
87oveq1d 6937 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃))
95adantl 475 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
10 simp3 1129 . . . . 5 ((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
1110adantr 474 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
1211adantr 474 . . . . . . 7 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑉 ∈ Fin)
131clwwlknonfin 27496 . . . . . . 7 (𝑉 ∈ Fin → (𝑥(ClWWalksNOn‘𝐺)𝑃) ∈ Fin)
14 hashcl 13462 . . . . . . 7 ((𝑥(ClWWalksNOn‘𝐺)𝑃) ∈ Fin → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℕ0)
1512, 13, 143syl 18 . . . . . 6 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℕ0)
1615nn0zd 11832 . . . . 5 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℤ)
1716ralrimiva 3148 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ∀𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℤ)
189, 11, 17modfsummod 14930 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = (Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) mod 𝑃))
19 simpl 476 . . . . . 6 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
20 simpr 479 . . . . . . . . 9 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
2120anim1i 608 . . . . . . . 8 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ∧ 𝑥𝑉))
2221ancomd 455 . . . . . . 7 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
23 3anass 1079 . . . . . . 7 ((𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
2422, 23sylibr 226 . . . . . 6 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
251numclwwlk5 27820 . . . . . 6 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
2619, 24, 25syl2an2r 675 . . . . 5 ((((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
2726sumeq2dv 14841 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = Σ𝑥𝑉 1)
2827oveq1d 6937 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
2918, 28eqtrd 2814 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
30 1cnd 10371 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 1 ∈ ℂ)
31 fsumconst 14926 . . . . 5 ((𝑉 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝑉 1 = ((♯‘𝑉) · 1))
3210, 30, 31syl2an 589 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = ((♯‘𝑉) · 1))
33 hashcl 13462 . . . . . . . 8 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
3433nn0red 11703 . . . . . . 7 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
35 ax-1rid 10342 . . . . . . 7 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) · 1) = (♯‘𝑉))
3634, 35syl 17 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) · 1) = (♯‘𝑉))
37363ad2ant3 1126 . . . . 5 ((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · 1) = (♯‘𝑉))
3837adantr 474 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) · 1) = (♯‘𝑉))
3932, 38eqtrd 2814 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = (♯‘𝑉))
4039oveq1d 6937 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 1 mod 𝑃) = ((♯‘𝑉) mod 𝑃))
418, 29, 403eqtrd 2818 1 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4886  cfv 6135  (class class class)co 6922  Fincfn 8241  cc 10270  cr 10271  1c1 10273   · cmul 10277  cmin 10606  cn 11374  0cn0 11642  cz 11728   mod cmo 12987  chash 13435  Σcsu 14824  cdvds 15387  cprime 15790  Vtxcvtx 26344  FinUSGraphcfusgr 26663  RegUSGraphcrusgr 26904   ClWWalksN cclwwlkn 27413  ClWWalksNOncclwwlknon 27489   FriendGraph cfrgr 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-xadd 12258  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-substr 13731  df-pfx 13780  df-s2 13999  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-dvds 15388  df-gcd 15623  df-prm 15791  df-phi 15875  df-vtx 26346  df-iedg 26347  df-edg 26396  df-uhgr 26406  df-ushgr 26407  df-upgr 26430  df-umgr 26431  df-uspgr 26499  df-usgr 26500  df-fusgr 26664  df-nbgr 26680  df-vtxdg 26814  df-rgr 26905  df-rusgr 26906  df-wwlks 27179  df-wwlksn 27180  df-wwlksnon 27181  df-clwwlk 27362  df-clwwlkn 27414  df-clwwlknon 27490  df-frgr 27665
This theorem is referenced by:  numclwwlk7  27823
  Copyright terms: Public domain W3C validator