MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk6 Structured version   Visualization version   GIF version

Theorem numclwwlk6 28754
Description: For a prime divisor 𝑃 of 𝐾 − 1, the total number of closed walks of length 𝑃 in a 𝐾-regular friendship graph is equal modulo 𝑃 to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.) (Proof shortened by AV, 7-Mar-2022.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))

Proof of Theorem numclwwlk6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk6.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21finrusgrfusgr 27932 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
323adant2 1130 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
4 prmnn 16379 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
54adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
61numclwwlk4 28750 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℕ) → (♯‘(𝑃 ClWWalksN 𝐺)) = Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)))
73, 5, 6syl2an 596 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑃 ClWWalksN 𝐺)) = Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)))
87oveq1d 7290 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃))
95adantl 482 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
10 simp3 1137 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
1110adantr 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
1211adantr 481 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑉 ∈ Fin)
131clwwlknonfin 28458 . . . . . . 7 (𝑉 ∈ Fin → (𝑥(ClWWalksNOn‘𝐺)𝑃) ∈ Fin)
14 hashcl 14071 . . . . . . 7 ((𝑥(ClWWalksNOn‘𝐺)𝑃) ∈ Fin → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℕ0)
1512, 13, 143syl 18 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℕ0)
1615nn0zd 12424 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℤ)
1716ralrimiva 3103 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ∀𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℤ)
189, 11, 17modfsummod 15506 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = (Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) mod 𝑃))
19 simpl 483 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
20 simpr 485 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
2120anim1ci 616 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
22 3anass 1094 . . . . . . 7 ((𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
2321, 22sylibr 233 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
241numclwwlk5 28752 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
2519, 23, 24syl2an2r 682 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
2625sumeq2dv 15415 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = Σ𝑥𝑉 1)
2726oveq1d 7290 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
2818, 27eqtrd 2778 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
29 1cnd 10970 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 1 ∈ ℂ)
30 fsumconst 15502 . . . . 5 ((𝑉 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝑉 1 = ((♯‘𝑉) · 1))
3110, 29, 30syl2an 596 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = ((♯‘𝑉) · 1))
32 hashcl 14071 . . . . . . . 8 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
3332nn0red 12294 . . . . . . 7 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
34 ax-1rid 10941 . . . . . . 7 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) · 1) = (♯‘𝑉))
3533, 34syl 17 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) · 1) = (♯‘𝑉))
36353ad2ant3 1134 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · 1) = (♯‘𝑉))
3736adantr 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) · 1) = (♯‘𝑉))
3831, 37eqtrd 2778 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = (♯‘𝑉))
3938oveq1d 7290 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 1 mod 𝑃) = ((♯‘𝑉) mod 𝑃))
408, 28, 393eqtrd 2782 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  1c1 10872   · cmul 10876  cmin 11205  cn 11973  0cn0 12233  cz 12319   mod cmo 13589  chash 14044  Σcsu 15397  cdvds 15963  cprime 16376  Vtxcvtx 27366  FinUSGraphcfusgr 27683   RegUSGraph crusgr 27923   ClWWalksN cclwwlkn 28388  ClWWalksNOncclwwlknon 28451   FriendGraph cfrgr 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-s2 14561  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-ushgr 27429  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-fusgr 27684  df-nbgr 27700  df-vtxdg 27833  df-rgr 27924  df-rusgr 27925  df-wwlks 28195  df-wwlksn 28196  df-wwlksnon 28197  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452  df-frgr 28623
This theorem is referenced by:  numclwwlk7  28755
  Copyright terms: Public domain W3C validator