MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk6 Structured version   Visualization version   GIF version

Theorem numclwwlk6 30319
Description: For a prime divisor 𝑃 of 𝐾 − 1, the total number of closed walks of length 𝑃 in a 𝐾-regular friendship graph is equal modulo 𝑃 to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.) (Proof shortened by AV, 7-Mar-2022.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))

Proof of Theorem numclwwlk6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk6.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21finrusgrfusgr 29493 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
323adant2 1131 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
4 prmnn 16644 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
54adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
61numclwwlk4 30315 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℕ) → (♯‘(𝑃 ClWWalksN 𝐺)) = Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)))
73, 5, 6syl2an 596 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑃 ClWWalksN 𝐺)) = Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)))
87oveq1d 7402 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃))
95adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
10 simp3 1138 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
1110adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
1211adantr 480 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑉 ∈ Fin)
131clwwlknonfin 30023 . . . . . . 7 (𝑉 ∈ Fin → (𝑥(ClWWalksNOn‘𝐺)𝑃) ∈ Fin)
14 hashcl 14321 . . . . . . 7 ((𝑥(ClWWalksNOn‘𝐺)𝑃) ∈ Fin → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℕ0)
1512, 13, 143syl 18 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℕ0)
1615nn0zd 12555 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℤ)
1716ralrimiva 3125 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ∀𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) ∈ ℤ)
189, 11, 17modfsummod 15760 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = (Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) mod 𝑃))
19 simpl 482 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
20 simpr 484 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
2120anim1ci 616 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
22 3anass 1094 . . . . . . 7 ((𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
2321, 22sylibr 234 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
241numclwwlk5 30317 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
2519, 23, 24syl2an2r 685 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
2625sumeq2dv 15668 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = Σ𝑥𝑉 1)
2726oveq1d 7402 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 ((♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
2818, 27eqtrd 2764 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (♯‘(𝑥(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
29 1cnd 11169 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 1 ∈ ℂ)
30 fsumconst 15756 . . . . 5 ((𝑉 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝑉 1 = ((♯‘𝑉) · 1))
3110, 29, 30syl2an 596 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = ((♯‘𝑉) · 1))
32 hashcl 14321 . . . . . . . 8 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
3332nn0red 12504 . . . . . . 7 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
34 ax-1rid 11138 . . . . . . 7 ((♯‘𝑉) ∈ ℝ → ((♯‘𝑉) · 1) = (♯‘𝑉))
3533, 34syl 17 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) · 1) = (♯‘𝑉))
36353ad2ant3 1135 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((♯‘𝑉) · 1) = (♯‘𝑉))
3736adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) · 1) = (♯‘𝑉))
3831, 37eqtrd 2764 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = (♯‘𝑉))
3938oveq1d 7402 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 1 mod 𝑃) = ((♯‘𝑉) mod 𝑃))
408, 28, 393eqtrd 2768 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  1c1 11069   · cmul 11073  cmin 11405  cn 12186  0cn0 12442  cz 12529   mod cmo 13831  chash 14295  Σcsu 15652  cdvds 16222  cprime 16641  Vtxcvtx 28923  FinUSGraphcfusgr 29243   RegUSGraph crusgr 29484   ClWWalksN cclwwlkn 29953  ClWWalksNOncclwwlknon 30016   FriendGraph cfrgr 30187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-s2 14814  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-fusgr 29244  df-nbgr 29260  df-vtxdg 29394  df-rgr 29485  df-rusgr 29486  df-wwlks 29760  df-wwlksn 29761  df-wwlksnon 29762  df-clwwlk 29911  df-clwwlkn 29954  df-clwwlknon 30017  df-frgr 30188
This theorem is referenced by:  numclwwlk7  30320
  Copyright terms: Public domain W3C validator