MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreggt1 Structured version   Visualization version   GIF version

Theorem frgrreggt1 30329
Description: If a finite nonempty friendship graph is 𝐾-regular with 𝐾 > 1, then 𝐾 must be 2. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreggt1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))

Proof of Theorem frgrreggt1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ FriendGraph )
21anim1ci 616 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3 simp3 1138 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
4 simp2 1137 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
53, 4jca 511 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
65adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
7 frgrreggt1.v . . . . 5 𝑉 = (Vtx‘𝐺)
87numclwwlk7lem 30325 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
92, 6, 8syl2anc 584 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℕ0)
10 2z 12572 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ∈ ℤ)
12 nn0z 12561 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1312adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 𝐾 ∈ ℤ)
14 peano2zm 12583 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ ℤ)
16 zltlem1 12593 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1710, 12, 16sylancr 587 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1817biimpa 476 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ≤ (𝐾 − 1))
19 eluz2 12806 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 2 ≤ (𝐾 − 1)))
2011, 15, 18, 19syl3anbrc 1344 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ (ℤ‘2))
21 exprmfct 16681 . . . . . . . 8 ((𝐾 − 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
2220, 21syl 17 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
234anim1ci 616 . . . . . . . . . . . . . 14 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝑉 ∈ Fin))
247finrusgrfusgr 29500 . . . . . . . . . . . . . 14 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2523, 24syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
26253ad2ant3 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FinUSGraph)
27 simp1l 1198 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝑝 ∈ ℙ)
28 numclwwlk8 30328 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑝 ∈ ℙ) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
2926, 27, 28syl2anc 584 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
3023ad2ant3 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31 pm3.22 459 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
32313adant1 1130 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
3332adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
34333ad2ant3 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
35 simp1 1136 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)))
367numclwwlk7 30327 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1))) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
3730, 34, 35, 36syl3anc 1373 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
38 eqeq1 2734 . . . . . . . . . . . 12 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 ↔ 0 = 1))
39 ax-1ne0 11144 . . . . . . . . . . . . . 14 1 ≠ 0
4039nesymi 2983 . . . . . . . . . . . . 13 ¬ 0 = 1
4140pm2.21i 119 . . . . . . . . . . . 12 (0 = 1 → 𝐾 = 2)
4238, 41biimtrdi 253 . . . . . . . . . . 11 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 → 𝐾 = 2))
4329, 37, 42sylc 65 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
4443a1d 25 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (1 < 𝐾𝐾 = 2))
45443exp 1119 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4645rexlimiva 3127 . . . . . . 7 (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4722, 46mpcom 38 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2)))
4847expcom 413 . . . . 5 (2 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4948com23 86 . . . 4 (2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
50 1red 11182 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 1 ∈ ℝ)
51 nn0re 12458 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5250, 51ltnled 11328 . . . . . . . 8 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 ≤ 1))
53 1e2m1 12315 . . . . . . . . . . 11 1 = (2 − 1)
5453a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 1 = (2 − 1))
5554breq2d 5122 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ 𝐾 ≤ (2 − 1)))
5655notbid 318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ 1 ↔ ¬ 𝐾 ≤ (2 − 1)))
57 zltlem1 12593 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5812, 10, 57sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5958bicomd 223 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ (2 − 1) ↔ 𝐾 < 2))
6059notbid 318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ (2 − 1) ↔ ¬ 𝐾 < 2))
6152, 56, 603bitrd 305 . . . . . . 7 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 < 2))
62 2re 12267 . . . . . . . . 9 2 ∈ ℝ
63 lttri3 11264 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐾 = 2 ↔ (¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾)))
6463biimprd 248 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6551, 62, 64sylancl 586 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6665expd 415 . . . . . . 7 (𝐾 ∈ ℕ0 → (¬ 𝐾 < 2 → (¬ 2 < 𝐾𝐾 = 2)))
6761, 66sylbid 240 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 𝐾 → (¬ 2 < 𝐾𝐾 = 2)))
6867com3r 87 . . . . 5 (¬ 2 < 𝐾 → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
6968a1d 25 . . . 4 (¬ 2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
7049, 69pm2.61i 182 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
719, 70mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))
7271expimpd 453 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076   < clt 11215  cle 11216  cmin 11412  2c2 12248  0cn0 12449  cz 12536  cuz 12800   mod cmo 13838  chash 14302  cdvds 16229  cprime 16648  Vtxcvtx 28930  FinUSGraphcfusgr 29250   RegUSGraph crusgr 29491   ClWWalksN cclwwlkn 29960   FriendGraph cfrgr 30194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-reps 14741  df-csh 14761  df-s2 14821  df-s3 14822  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-ushgr 28993  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-fusgr 29251  df-nbgr 29267  df-vtxdg 29401  df-rgr 29492  df-rusgr 29493  df-wlks 29534  df-wlkson 29535  df-trls 29627  df-trlson 29628  df-pths 29651  df-spths 29652  df-pthson 29653  df-spthson 29654  df-wwlks 29767  df-wwlksn 29768  df-wwlksnon 29769  df-wspthsn 29770  df-wspthsnon 29771  df-clwwlk 29918  df-clwwlkn 29961  df-clwwlknon 30024  df-frgr 30195
This theorem is referenced by:  frgrreg  30330
  Copyright terms: Public domain W3C validator