MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreggt1 Structured version   Visualization version   GIF version

Theorem frgrreggt1 30373
Description: If a finite nonempty friendship graph is 𝐾-regular with 𝐾 > 1, then 𝐾 must be 2. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreggt1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))

Proof of Theorem frgrreggt1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ FriendGraph )
21anim1ci 616 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3 simp3 1138 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
4 simp2 1137 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
53, 4jca 511 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
65adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
7 frgrreggt1.v . . . . 5 𝑉 = (Vtx‘𝐺)
87numclwwlk7lem 30369 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
92, 6, 8syl2anc 584 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℕ0)
10 2z 12543 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ∈ ℤ)
12 nn0z 12532 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1312adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 𝐾 ∈ ℤ)
14 peano2zm 12554 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ ℤ)
16 zltlem1 12564 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1710, 12, 16sylancr 587 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1817biimpa 476 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ≤ (𝐾 − 1))
19 eluz2 12777 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 2 ≤ (𝐾 − 1)))
2011, 15, 18, 19syl3anbrc 1344 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ (ℤ‘2))
21 exprmfct 16651 . . . . . . . 8 ((𝐾 − 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
2220, 21syl 17 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
234anim1ci 616 . . . . . . . . . . . . . 14 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝑉 ∈ Fin))
247finrusgrfusgr 29547 . . . . . . . . . . . . . 14 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2523, 24syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
26253ad2ant3 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FinUSGraph)
27 simp1l 1198 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝑝 ∈ ℙ)
28 numclwwlk8 30372 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑝 ∈ ℙ) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
2926, 27, 28syl2anc 584 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
3023ad2ant3 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31 pm3.22 459 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
32313adant1 1130 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
3332adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
34333ad2ant3 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
35 simp1 1136 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)))
367numclwwlk7 30371 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1))) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
3730, 34, 35, 36syl3anc 1373 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
38 eqeq1 2733 . . . . . . . . . . . 12 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 ↔ 0 = 1))
39 ax-1ne0 11115 . . . . . . . . . . . . . 14 1 ≠ 0
4039nesymi 2982 . . . . . . . . . . . . 13 ¬ 0 = 1
4140pm2.21i 119 . . . . . . . . . . . 12 (0 = 1 → 𝐾 = 2)
4238, 41biimtrdi 253 . . . . . . . . . . 11 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 → 𝐾 = 2))
4329, 37, 42sylc 65 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
4443a1d 25 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (1 < 𝐾𝐾 = 2))
45443exp 1119 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4645rexlimiva 3126 . . . . . . 7 (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4722, 46mpcom 38 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2)))
4847expcom 413 . . . . 5 (2 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4948com23 86 . . . 4 (2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
50 1red 11153 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 1 ∈ ℝ)
51 nn0re 12429 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5250, 51ltnled 11299 . . . . . . . 8 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 ≤ 1))
53 1e2m1 12286 . . . . . . . . . . 11 1 = (2 − 1)
5453a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 1 = (2 − 1))
5554breq2d 5114 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ 𝐾 ≤ (2 − 1)))
5655notbid 318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ 1 ↔ ¬ 𝐾 ≤ (2 − 1)))
57 zltlem1 12564 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5812, 10, 57sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5958bicomd 223 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ (2 − 1) ↔ 𝐾 < 2))
6059notbid 318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ (2 − 1) ↔ ¬ 𝐾 < 2))
6152, 56, 603bitrd 305 . . . . . . 7 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 < 2))
62 2re 12238 . . . . . . . . 9 2 ∈ ℝ
63 lttri3 11235 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐾 = 2 ↔ (¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾)))
6463biimprd 248 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6551, 62, 64sylancl 586 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6665expd 415 . . . . . . 7 (𝐾 ∈ ℕ0 → (¬ 𝐾 < 2 → (¬ 2 < 𝐾𝐾 = 2)))
6761, 66sylbid 240 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 𝐾 → (¬ 2 < 𝐾𝐾 = 2)))
6867com3r 87 . . . . 5 (¬ 2 < 𝐾 → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
6968a1d 25 . . . 4 (¬ 2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
7049, 69pm2.61i 182 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
719, 70mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))
7271expimpd 453 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cr 11045  0cc0 11046  1c1 11047   < clt 11186  cle 11187  cmin 11383  2c2 12219  0cn0 12420  cz 12507  cuz 12771   mod cmo 13809  chash 14273  cdvds 16199  cprime 16618  Vtxcvtx 28977  FinUSGraphcfusgr 29297   RegUSGraph crusgr 29538   ClWWalksN cclwwlkn 30004   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-ac2 10394  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-ac 10047  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-rp 12930  df-xadd 13051  df-ico 13290  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-hash 14274  df-word 14457  df-lsw 14506  df-concat 14514  df-s1 14539  df-substr 14584  df-pfx 14614  df-reps 14711  df-csh 14731  df-s2 14791  df-s3 14792  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15431  df-sum 15630  df-dvds 16200  df-gcd 16442  df-prm 16619  df-phi 16713  df-vtx 28979  df-iedg 28980  df-edg 29029  df-uhgr 29039  df-ushgr 29040  df-upgr 29063  df-umgr 29064  df-uspgr 29131  df-usgr 29132  df-fusgr 29298  df-nbgr 29314  df-vtxdg 29448  df-rgr 29539  df-rusgr 29540  df-wlks 29581  df-wlkson 29582  df-trls 29672  df-trlson 29673  df-pths 29695  df-spths 29696  df-pthson 29697  df-spthson 29698  df-wwlks 29811  df-wwlksn 29812  df-wwlksnon 29813  df-wspthsn 29814  df-wspthsnon 29815  df-clwwlk 29962  df-clwwlkn 30005  df-clwwlknon 30068  df-frgr 30239
This theorem is referenced by:  frgrreg  30374
  Copyright terms: Public domain W3C validator