MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreggt1 Structured version   Visualization version   GIF version

Theorem frgrreggt1 28322
Description: If a finite nonempty friendship graph is 𝐾-regular with 𝐾 > 1, then 𝐾 must be 2. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreggt1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))

Proof of Theorem frgrreggt1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ FriendGraph )
21anim1ci 619 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3 simp3 1139 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
4 simp2 1138 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
53, 4jca 515 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
65adantr 484 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
7 frgrreggt1.v . . . . 5 𝑉 = (Vtx‘𝐺)
87numclwwlk7lem 28318 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
92, 6, 8syl2anc 587 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℕ0)
10 2z 12088 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ∈ ℤ)
12 nn0z 12079 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1312adantr 484 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 𝐾 ∈ ℤ)
14 peano2zm 12099 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ ℤ)
16 zltlem1 12109 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1710, 12, 16sylancr 590 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1817biimpa 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ≤ (𝐾 − 1))
19 eluz2 12323 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 2 ≤ (𝐾 − 1)))
2011, 15, 18, 19syl3anbrc 1344 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ (ℤ‘2))
21 exprmfct 16138 . . . . . . . 8 ((𝐾 − 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
2220, 21syl 17 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
234anim1ci 619 . . . . . . . . . . . . . 14 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝑉 ∈ Fin))
247finrusgrfusgr 27499 . . . . . . . . . . . . . 14 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2523, 24syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
26253ad2ant3 1136 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FinUSGraph)
27 simp1l 1198 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝑝 ∈ ℙ)
28 numclwwlk8 28321 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑝 ∈ ℙ) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
2926, 27, 28syl2anc 587 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
3023ad2ant3 1136 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31 pm3.22 463 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
32313adant1 1131 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
3332adantr 484 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
34333ad2ant3 1136 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
35 simp1 1137 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)))
367numclwwlk7 28320 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1))) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
3730, 34, 35, 36syl3anc 1372 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
38 eqeq1 2742 . . . . . . . . . . . 12 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 ↔ 0 = 1))
39 ax-1ne0 10677 . . . . . . . . . . . . . 14 1 ≠ 0
4039nesymi 2991 . . . . . . . . . . . . 13 ¬ 0 = 1
4140pm2.21i 119 . . . . . . . . . . . 12 (0 = 1 → 𝐾 = 2)
4238, 41syl6bi 256 . . . . . . . . . . 11 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 → 𝐾 = 2))
4329, 37, 42sylc 65 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
4443a1d 25 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (1 < 𝐾𝐾 = 2))
45443exp 1120 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4645rexlimiva 3190 . . . . . . 7 (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4722, 46mpcom 38 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2)))
4847expcom 417 . . . . 5 (2 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4948com23 86 . . . 4 (2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
50 1red 10713 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 1 ∈ ℝ)
51 nn0re 11978 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5250, 51ltnled 10858 . . . . . . . 8 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 ≤ 1))
53 1e2m1 11836 . . . . . . . . . . 11 1 = (2 − 1)
5453a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 1 = (2 − 1))
5554breq2d 5039 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ 𝐾 ≤ (2 − 1)))
5655notbid 321 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ 1 ↔ ¬ 𝐾 ≤ (2 − 1)))
57 zltlem1 12109 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5812, 10, 57sylancl 589 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5958bicomd 226 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ (2 − 1) ↔ 𝐾 < 2))
6059notbid 321 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ (2 − 1) ↔ ¬ 𝐾 < 2))
6152, 56, 603bitrd 308 . . . . . . 7 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 < 2))
62 2re 11783 . . . . . . . . 9 2 ∈ ℝ
63 lttri3 10795 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐾 = 2 ↔ (¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾)))
6463biimprd 251 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6551, 62, 64sylancl 589 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6665expd 419 . . . . . . 7 (𝐾 ∈ ℕ0 → (¬ 𝐾 < 2 → (¬ 2 < 𝐾𝐾 = 2)))
6761, 66sylbid 243 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 𝐾 → (¬ 2 < 𝐾𝐾 = 2)))
6867com3r 87 . . . . 5 (¬ 2 < 𝐾 → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
6968a1d 25 . . . 4 (¬ 2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
7049, 69pm2.61i 185 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
719, 70mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))
7271expimpd 457 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wrex 3054  c0 4209   class class class wbr 5027  cfv 6333  (class class class)co 7164  Fincfn 8548  cr 10607  0cc0 10608  1c1 10609   < clt 10746  cle 10747  cmin 10941  2c2 11764  0cn0 11969  cz 12055  cuz 12317   mod cmo 13321  chash 13775  cdvds 15692  cprime 16105  Vtxcvtx 26933  FinUSGraphcfusgr 27250   RegUSGraph crusgr 27490   ClWWalksN cclwwlkn 27953   FriendGraph cfrgr 28187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-ac2 9956  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-disj 4993  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-er 8313  df-ec 8315  df-qs 8319  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-oi 9040  df-dju 9396  df-card 9434  df-ac 9609  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-xnn0 12042  df-z 12056  df-uz 12318  df-rp 12466  df-xadd 12584  df-ico 12820  df-fz 12975  df-fzo 13118  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-hash 13776  df-word 13949  df-lsw 13997  df-concat 14005  df-s1 14032  df-substr 14085  df-pfx 14115  df-reps 14213  df-csh 14233  df-s2 14292  df-s3 14293  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-sum 15129  df-dvds 15693  df-gcd 15931  df-prm 16106  df-phi 16196  df-vtx 26935  df-iedg 26936  df-edg 26985  df-uhgr 26995  df-ushgr 26996  df-upgr 27019  df-umgr 27020  df-uspgr 27087  df-usgr 27088  df-fusgr 27251  df-nbgr 27267  df-vtxdg 27400  df-rgr 27491  df-rusgr 27492  df-wlks 27533  df-wlkson 27534  df-trls 27626  df-trlson 27627  df-pths 27649  df-spths 27650  df-pthson 27651  df-spthson 27652  df-wwlks 27760  df-wwlksn 27761  df-wwlksnon 27762  df-wspthsn 27763  df-wspthsnon 27764  df-clwwlk 27911  df-clwwlkn 27954  df-clwwlknon 28017  df-frgr 28188
This theorem is referenced by:  frgrreg  28323
  Copyright terms: Public domain W3C validator