MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreggt1 Structured version   Visualization version   GIF version

Theorem frgrreggt1 30078
Description: If a finite nonempty friendship graph is 𝐾-regular with 𝐾 > 1, then 𝐾 must be 2. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreggt1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))

Proof of Theorem frgrreggt1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ FriendGraph )
21anim1ci 615 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3 simp3 1137 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
4 simp2 1136 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
53, 4jca 511 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
65adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
7 frgrreggt1.v . . . . 5 𝑉 = (Vtx‘𝐺)
87numclwwlk7lem 30074 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
92, 6, 8syl2anc 583 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℕ0)
10 2z 12601 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ∈ ℤ)
12 nn0z 12590 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1312adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 𝐾 ∈ ℤ)
14 peano2zm 12612 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ ℤ)
16 zltlem1 12622 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1710, 12, 16sylancr 586 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 < 𝐾 ↔ 2 ≤ (𝐾 − 1)))
1817biimpa 476 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → 2 ≤ (𝐾 − 1))
19 eluz2 12835 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 2 ≤ (𝐾 − 1)))
2011, 15, 18, 19syl3anbrc 1342 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (𝐾 − 1) ∈ (ℤ‘2))
21 exprmfct 16648 . . . . . . . 8 ((𝐾 − 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
2220, 21syl 17 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1))
234anim1ci 615 . . . . . . . . . . . . . 14 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 RegUSGraph 𝐾𝑉 ∈ Fin))
247finrusgrfusgr 29254 . . . . . . . . . . . . . 14 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2523, 24syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
26253ad2ant3 1134 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FinUSGraph)
27 simp1l 1196 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝑝 ∈ ℙ)
28 numclwwlk8 30077 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑝 ∈ ℙ) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
2926, 27, 28syl2anc 583 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0)
3023ad2ant3 1134 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31 pm3.22 459 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
32313adant1 1129 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
3332adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
34333ad2ant3 1134 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
35 simp1 1135 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)))
367numclwwlk7 30076 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1))) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
3730, 34, 35, 36syl3anc 1370 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → ((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1)
38 eqeq1 2735 . . . . . . . . . . . 12 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 ↔ 0 = 1))
39 ax-1ne0 11185 . . . . . . . . . . . . . 14 1 ≠ 0
4039nesymi 2997 . . . . . . . . . . . . 13 ¬ 0 = 1
4140pm2.21i 119 . . . . . . . . . . . 12 (0 = 1 → 𝐾 = 2)
4238, 41syl6bi 253 . . . . . . . . . . 11 (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 0 → (((♯‘(𝑝 ClWWalksN 𝐺)) mod 𝑝) = 1 → 𝐾 = 2))
4329, 37, 42sylc 65 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
4443a1d 25 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) ∧ (𝐾 ∈ ℕ0 ∧ 2 < 𝐾) ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾)) → (1 < 𝐾𝐾 = 2))
45443exp 1118 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐾 − 1)) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4645rexlimiva 3146 . . . . . . 7 (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐾 − 1) → ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4722, 46mpcom 38 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ 2 < 𝐾) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2)))
4847expcom 413 . . . . 5 (2 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))))
4948com23 86 . . . 4 (2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
50 1red 11222 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 1 ∈ ℝ)
51 nn0re 12488 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5250, 51ltnled 11368 . . . . . . . 8 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 ≤ 1))
53 1e2m1 12346 . . . . . . . . . . 11 1 = (2 − 1)
5453a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 1 = (2 − 1))
5554breq2d 5160 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ 𝐾 ≤ (2 − 1)))
5655notbid 318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ 1 ↔ ¬ 𝐾 ≤ (2 − 1)))
57 zltlem1 12622 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5812, 10, 57sylancl 585 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 < 2 ↔ 𝐾 ≤ (2 − 1)))
5958bicomd 222 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ≤ (2 − 1) ↔ 𝐾 < 2))
6059notbid 318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (¬ 𝐾 ≤ (2 − 1) ↔ ¬ 𝐾 < 2))
6152, 56, 603bitrd 305 . . . . . . 7 (𝐾 ∈ ℕ0 → (1 < 𝐾 ↔ ¬ 𝐾 < 2))
62 2re 12293 . . . . . . . . 9 2 ∈ ℝ
63 lttri3 11304 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐾 = 2 ↔ (¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾)))
6463biimprd 247 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ) → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6551, 62, 64sylancl 585 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((¬ 𝐾 < 2 ∧ ¬ 2 < 𝐾) → 𝐾 = 2))
6665expd 415 . . . . . . 7 (𝐾 ∈ ℕ0 → (¬ 𝐾 < 2 → (¬ 2 < 𝐾𝐾 = 2)))
6761, 66sylbid 239 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 𝐾 → (¬ 2 < 𝐾𝐾 = 2)))
6867com3r 87 . . . . 5 (¬ 2 < 𝐾 → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
6968a1d 25 . . . 4 (¬ 2 < 𝐾 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2))))
7049, 69pm2.61i 182 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 ∈ ℕ0 → (1 < 𝐾𝐾 = 2)))
719, 70mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → (1 < 𝐾𝐾 = 2))
7271expimpd 453 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wrex 3069  c0 4322   class class class wbr 5148  cfv 6543  (class class class)co 7412  Fincfn 8945  cr 11115  0cc0 11116  1c1 11117   < clt 11255  cle 11256  cmin 11451  2c2 12274  0cn0 12479  cz 12565  cuz 12829   mod cmo 13841  chash 14297  cdvds 16204  cprime 16615  Vtxcvtx 28688  FinUSGraphcfusgr 29005   RegUSGraph crusgr 29245   ClWWalksN cclwwlkn 29709   FriendGraph cfrgr 29943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-ac2 10464  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-er 8709  df-ec 8711  df-qs 8715  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-ac 10117  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-xnn0 12552  df-z 12566  df-uz 12830  df-rp 12982  df-xadd 13100  df-ico 13337  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-hash 14298  df-word 14472  df-lsw 14520  df-concat 14528  df-s1 14553  df-substr 14598  df-pfx 14628  df-reps 14726  df-csh 14746  df-s2 14806  df-s3 14807  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640  df-dvds 16205  df-gcd 16443  df-prm 16616  df-phi 16706  df-vtx 28690  df-iedg 28691  df-edg 28740  df-uhgr 28750  df-ushgr 28751  df-upgr 28774  df-umgr 28775  df-uspgr 28842  df-usgr 28843  df-fusgr 29006  df-nbgr 29022  df-vtxdg 29155  df-rgr 29246  df-rusgr 29247  df-wlks 29288  df-wlkson 29289  df-trls 29381  df-trlson 29382  df-pths 29405  df-spths 29406  df-pthson 29407  df-spthson 29408  df-wwlks 29516  df-wwlksn 29517  df-wwlksnon 29518  df-wspthsn 29519  df-wspthsnon 29520  df-clwwlk 29667  df-clwwlkn 29710  df-clwwlknon 29773  df-frgr 29944
This theorem is referenced by:  frgrreg  30079
  Copyright terms: Public domain W3C validator