![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1 | Structured version Visualization version GIF version |
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = ∅, but (𝑋𝐶2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 30380, needs not be ∅ in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 30401. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 30403. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
Ref | Expression |
---|---|
numclwwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 29600 | . . . . 5 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
2 | 1 | ad2antlr 726 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ USGraph) |
3 | simprl 770 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑋 ∈ 𝑉) | |
4 | simprr 772 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑁 ∈ (ℤ≥‘3)) | |
5 | extwwlkfab.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | extwwlkfab.c | . . . . 5 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
7 | extwwlkfab.f | . . . . 5 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
8 | 5, 6, 7 | numclwwlk1lem2 30392 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
9 | 2, 3, 4, 8 | syl3anc 1371 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
10 | hasheni 14397 | . . 3 ⊢ ((𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) |
12 | eqid 2740 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
13 | 12 | clwwlknonfin 30126 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
14 | 5 | eleq1i 2835 | . . . . . 6 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
15 | 7 | eleq1i 2835 | . . . . . 6 ⊢ (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
16 | 13, 14, 15 | 3imtr4i 292 | . . . . 5 ⊢ (𝑉 ∈ Fin → 𝐹 ∈ Fin) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐹 ∈ Fin) |
18 | 17 | adantr 480 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐹 ∈ Fin) |
19 | 5 | finrusgrfusgr 29601 | . . . . . . 7 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
20 | 19 | ancoms 458 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph) |
21 | fusgrfis 29365 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (Edg‘𝐺) ∈ Fin) |
23 | 22 | adantr 480 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (Edg‘𝐺) ∈ Fin) |
24 | eqid 2740 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
25 | 5, 24 | nbusgrfi 29409 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋 ∈ 𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
26 | 2, 23, 3, 25 | syl3anc 1371 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
27 | hashxp 14483 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) | |
28 | 18, 26, 27 | syl2anc 583 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) |
29 | 5 | rusgrpropnb 29619 | . . . . . . . . 9 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾)) |
30 | oveq2 7456 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋)) | |
31 | 30 | fveqeq2d 6928 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑋 → ((♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
32 | 31 | rspccv 3632 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
33 | 32 | 3ad2ant3 1135 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
34 | 29, 33 | syl 17 | . . . . . . . 8 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
35 | 34 | adantl 481 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
36 | 35 | com12 32 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
38 | 37 | impcom 407 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾) |
39 | 38 | oveq2d 7464 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · 𝐾)) |
40 | hashcl 14405 | . . . . 5 ⊢ (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0) | |
41 | nn0cn 12563 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ) | |
42 | 18, 40, 41 | 3syl 18 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐹) ∈ ℂ) |
43 | 20 | adantr 480 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ FinUSGraph) |
44 | simplr 768 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 RegUSGraph 𝐾) | |
45 | ne0i 4364 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) | |
46 | 45 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑉 ≠ ∅) |
47 | 46 | adantl 481 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑉 ≠ ∅) |
48 | 5 | frusgrnn0 29607 | . . . . . 6 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) |
49 | 43, 44, 47, 48 | syl3anc 1371 | . . . . 5 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐾 ∈ ℕ0) |
50 | 49 | nn0cnd 12615 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐾 ∈ ℂ) |
51 | 42, 50 | mulcomd 11311 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · 𝐾) = (𝐾 · (♯‘𝐹))) |
52 | 39, 51 | eqtrd 2780 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (♯‘𝐹))) |
53 | 11, 28, 52 | 3eqtrd 2784 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 ∅c0 4352 class class class wbr 5166 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ≈ cen 9000 Fincfn 9003 ℂcc 11182 · cmul 11189 − cmin 11520 2c2 12348 3c3 12349 ℕ0cn0 12553 ℕ0*cxnn0 12625 ℤ≥cuz 12903 ♯chash 14379 Vtxcvtx 29031 Edgcedg 29082 USGraphcusgr 29184 FinUSGraphcfusgr 29351 NeighbVtx cnbgr 29367 RegUSGraph crusgr 29592 ClWWalksNOncclwwlknon 30119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-s2 14897 df-vtx 29033 df-iedg 29034 df-edg 29083 df-uhgr 29093 df-ushgr 29094 df-upgr 29117 df-umgr 29118 df-uspgr 29185 df-usgr 29186 df-fusgr 29352 df-nbgr 29368 df-vtxdg 29502 df-rgr 29593 df-rusgr 29594 df-wwlks 29863 df-wwlksn 29864 df-clwwlk 30014 df-clwwlkn 30057 df-clwwlknon 30120 |
This theorem is referenced by: numclwlk1lem2 30402 numclwwlk3 30417 |
Copyright terms: Public domain | W3C validator |