MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1 Structured version   Visualization version   GIF version

Theorem numclwwlk1 30049
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = βˆ…, but (𝑋𝐢2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 30036, needs not be βˆ… in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 30057. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 30059. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
Assertion
Ref Expression
numclwwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝐢𝑁)) = (𝐾 Β· (β™―β€˜πΉ)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐾(𝑀,𝑣,𝑛)

Proof of Theorem numclwwlk1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 29256 . . . . 5 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
21ad2antlr 724 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 ∈ USGraph)
3 simprl 768 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
4 simprr 770 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
5 extwwlkfab.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
6 extwwlkfab.c . . . . 5 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
7 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
85, 6, 7numclwwlk1lem2 30048 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) β‰ˆ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
92, 3, 4, 8syl3anc 1368 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋𝐢𝑁) β‰ˆ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
10 hasheni 14304 . . 3 ((𝑋𝐢𝑁) β‰ˆ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)) β†’ (β™―β€˜(𝑋𝐢𝑁)) = (β™―β€˜(𝐹 Γ— (𝐺 NeighbVtx 𝑋))))
119, 10syl 17 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝐢𝑁)) = (β™―β€˜(𝐹 Γ— (𝐺 NeighbVtx 𝑋))))
12 eqid 2724 . . . . . . 7 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1312clwwlknonfin 29782 . . . . . 6 ((Vtxβ€˜πΊ) ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
145eleq1i 2816 . . . . . 6 (𝑉 ∈ Fin ↔ (Vtxβ€˜πΊ) ∈ Fin)
157eleq1i 2816 . . . . . 6 (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
1613, 14, 153imtr4i 292 . . . . 5 (𝑉 ∈ Fin β†’ 𝐹 ∈ Fin)
1716adantr 480 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐹 ∈ Fin)
1817adantr 480 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐹 ∈ Fin)
195finrusgrfusgr 29257 . . . . . . 7 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ 𝐺 ∈ FinUSGraph)
2019ancoms 458 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐺 ∈ FinUSGraph)
21 fusgrfis 29022 . . . . . 6 (𝐺 ∈ FinUSGraph β†’ (Edgβ€˜πΊ) ∈ Fin)
2220, 21syl 17 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (Edgβ€˜πΊ) ∈ Fin)
2322adantr 480 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (Edgβ€˜πΊ) ∈ Fin)
24 eqid 2724 . . . . 5 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
255, 24nbusgrfi 29066 . . . 4 ((𝐺 ∈ USGraph ∧ (Edgβ€˜πΊ) ∈ Fin ∧ 𝑋 ∈ 𝑉) β†’ (𝐺 NeighbVtx 𝑋) ∈ Fin)
262, 23, 3, 25syl3anc 1368 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝐺 NeighbVtx 𝑋) ∈ Fin)
27 hashxp 14390 . . 3 ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) β†’ (β™―β€˜(𝐹 Γ— (𝐺 NeighbVtx 𝑋))) = ((β™―β€˜πΉ) Β· (β™―β€˜(𝐺 NeighbVtx 𝑋))))
2818, 26, 27syl2anc 583 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝐹 Γ— (𝐺 NeighbVtx 𝑋))) = ((β™―β€˜πΉ) Β· (β™―β€˜(𝐺 NeighbVtx 𝑋))))
295rusgrpropnb 29275 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 β†’ (𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘₯ ∈ 𝑉 (β™―β€˜(𝐺 NeighbVtx π‘₯)) = 𝐾))
30 oveq2 7409 . . . . . . . . . . . 12 (π‘₯ = 𝑋 β†’ (𝐺 NeighbVtx π‘₯) = (𝐺 NeighbVtx 𝑋))
3130fveqeq2d 6889 . . . . . . . . . . 11 (π‘₯ = 𝑋 β†’ ((β™―β€˜(𝐺 NeighbVtx π‘₯)) = 𝐾 ↔ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
3231rspccv 3601 . . . . . . . . . 10 (βˆ€π‘₯ ∈ 𝑉 (β™―β€˜(𝐺 NeighbVtx π‘₯)) = 𝐾 β†’ (𝑋 ∈ 𝑉 β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
33323ad2ant3 1132 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘₯ ∈ 𝑉 (β™―β€˜(𝐺 NeighbVtx π‘₯)) = 𝐾) β†’ (𝑋 ∈ 𝑉 β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
3429, 33syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾 β†’ (𝑋 ∈ 𝑉 β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
3534adantl 481 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝑋 ∈ 𝑉 β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
3635com12 32 . . . . . 6 (𝑋 ∈ 𝑉 β†’ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
3736adantr 480 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾))
3837impcom 407 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝐺 NeighbVtx 𝑋)) = 𝐾)
3938oveq2d 7417 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΉ) Β· (β™―β€˜(𝐺 NeighbVtx 𝑋))) = ((β™―β€˜πΉ) Β· 𝐾))
40 hashcl 14312 . . . . 5 (𝐹 ∈ Fin β†’ (β™―β€˜πΉ) ∈ β„•0)
41 nn0cn 12478 . . . . 5 ((β™―β€˜πΉ) ∈ β„•0 β†’ (β™―β€˜πΉ) ∈ β„‚)
4218, 40, 413syl 18 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΉ) ∈ β„‚)
4320adantr 480 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 ∈ FinUSGraph)
44 simplr 766 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 RegUSGraph 𝐾)
45 ne0i 4326 . . . . . . . 8 (𝑋 ∈ 𝑉 β†’ 𝑉 β‰  βˆ…)
4645adantr 480 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑉 β‰  βˆ…)
4746adantl 481 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑉 β‰  βˆ…)
485frusgrnn0 29263 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 β‰  βˆ…) β†’ 𝐾 ∈ β„•0)
4943, 44, 47, 48syl3anc 1368 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐾 ∈ β„•0)
5049nn0cnd 12530 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐾 ∈ β„‚)
5142, 50mulcomd 11231 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΉ) Β· 𝐾) = (𝐾 Β· (β™―β€˜πΉ)))
5239, 51eqtrd 2764 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΉ) Β· (β™―β€˜(𝐺 NeighbVtx 𝑋))) = (𝐾 Β· (β™―β€˜πΉ)))
5311, 28, 523eqtrd 2768 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝐢𝑁)) = (𝐾 Β· (β™―β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  {crab 3424  βˆ…c0 4314   class class class wbr 5138   Γ— cxp 5664  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403   β‰ˆ cen 8931  Fincfn 8934  β„‚cc 11103   Β· cmul 11110   βˆ’ cmin 11440  2c2 12263  3c3 12264  β„•0cn0 12468  β„•0*cxnn0 12540  β„€β‰₯cuz 12818  β™―chash 14286  Vtxcvtx 28691  Edgcedg 28742  USGraphcusgr 28844  FinUSGraphcfusgr 29008   NeighbVtx cnbgr 29024   RegUSGraph crusgr 29248  ClWWalksNOncclwwlknon 29775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-s2 14795  df-vtx 28693  df-iedg 28694  df-edg 28743  df-uhgr 28753  df-ushgr 28754  df-upgr 28777  df-umgr 28778  df-uspgr 28845  df-usgr 28846  df-fusgr 29009  df-nbgr 29025  df-vtxdg 29158  df-rgr 29249  df-rusgr 29250  df-wwlks 29519  df-wwlksn 29520  df-clwwlk 29670  df-clwwlkn 29713  df-clwwlknon 29776
This theorem is referenced by:  numclwlk1lem2  30058  numclwwlk3  30073
  Copyright terms: Public domain W3C validator