| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk1 | Structured version Visualization version GIF version | ||
| Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = ∅, but (𝑋𝐶2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 30332, needs not be ∅ in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 30353. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 30355. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| Ref | Expression |
|---|---|
| numclwwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrusgr 29547 | . . . . 5 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
| 2 | 1 | ad2antlr 727 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ USGraph) |
| 3 | simprl 770 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑋 ∈ 𝑉) | |
| 4 | simprr 772 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑁 ∈ (ℤ≥‘3)) | |
| 5 | extwwlkfab.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | extwwlkfab.c | . . . . 5 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 7 | extwwlkfab.f | . . . . 5 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
| 8 | 5, 6, 7 | numclwwlk1lem2 30344 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 9 | 2, 3, 4, 8 | syl3anc 1373 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 10 | hasheni 14259 | . . 3 ⊢ ((𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) |
| 12 | eqid 2733 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 13 | 12 | clwwlknonfin 30078 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
| 14 | 5 | eleq1i 2824 | . . . . . 6 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
| 15 | 7 | eleq1i 2824 | . . . . . 6 ⊢ (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
| 16 | 13, 14, 15 | 3imtr4i 292 | . . . . 5 ⊢ (𝑉 ∈ Fin → 𝐹 ∈ Fin) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐹 ∈ Fin) |
| 18 | 17 | adantr 480 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐹 ∈ Fin) |
| 19 | 5 | finrusgrfusgr 29548 | . . . . . . 7 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
| 20 | 19 | ancoms 458 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph) |
| 21 | fusgrfis 29312 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (Edg‘𝐺) ∈ Fin) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (Edg‘𝐺) ∈ Fin) |
| 24 | eqid 2733 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 25 | 5, 24 | nbusgrfi 29356 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋 ∈ 𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
| 26 | 2, 23, 3, 25 | syl3anc 1373 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
| 27 | hashxp 14345 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) | |
| 28 | 18, 26, 27 | syl2anc 584 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) |
| 29 | 5 | rusgrpropnb 29566 | . . . . . . . . 9 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾)) |
| 30 | oveq2 7362 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋)) | |
| 31 | 30 | fveqeq2d 6838 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑋 → ((♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 32 | 31 | rspccv 3570 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 33 | 32 | 3ad2ant3 1135 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 34 | 29, 33 | syl 17 | . . . . . . . 8 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 35 | 34 | adantl 481 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 36 | 35 | com12 32 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
| 38 | 37 | impcom 407 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾) |
| 39 | 38 | oveq2d 7370 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · 𝐾)) |
| 40 | hashcl 14267 | . . . . 5 ⊢ (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0) | |
| 41 | nn0cn 12400 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ) | |
| 42 | 18, 40, 41 | 3syl 18 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐹) ∈ ℂ) |
| 43 | 20 | adantr 480 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ FinUSGraph) |
| 44 | simplr 768 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 RegUSGraph 𝐾) | |
| 45 | ne0i 4290 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) | |
| 46 | 45 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑉 ≠ ∅) |
| 47 | 46 | adantl 481 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑉 ≠ ∅) |
| 48 | 5 | frusgrnn0 29554 | . . . . . 6 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) |
| 49 | 43, 44, 47, 48 | syl3anc 1373 | . . . . 5 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐾 ∈ ℕ0) |
| 50 | 49 | nn0cnd 12453 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐾 ∈ ℂ) |
| 51 | 42, 50 | mulcomd 11142 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · 𝐾) = (𝐾 · (♯‘𝐹))) |
| 52 | 39, 51 | eqtrd 2768 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (♯‘𝐹))) |
| 53 | 11, 28, 52 | 3eqtrd 2772 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {crab 3396 ∅c0 4282 class class class wbr 5095 × cxp 5619 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ≈ cen 8874 Fincfn 8877 ℂcc 11013 · cmul 11020 − cmin 11353 2c2 12189 3c3 12190 ℕ0cn0 12390 ℕ0*cxnn0 12463 ℤ≥cuz 12740 ♯chash 14241 Vtxcvtx 28978 Edgcedg 29029 USGraphcusgr 29131 FinUSGraphcfusgr 29298 NeighbVtx cnbgr 29314 RegUSGraph crusgr 29539 ClWWalksNOncclwwlknon 30071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-rp 12895 df-xadd 13016 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-word 14425 df-lsw 14474 df-concat 14482 df-s1 14508 df-substr 14553 df-pfx 14583 df-s2 14759 df-vtx 28980 df-iedg 28981 df-edg 29030 df-uhgr 29040 df-ushgr 29041 df-upgr 29064 df-umgr 29065 df-uspgr 29132 df-usgr 29133 df-fusgr 29299 df-nbgr 29315 df-vtxdg 29449 df-rgr 29540 df-rusgr 29541 df-wwlks 29812 df-wwlksn 29813 df-clwwlk 29966 df-clwwlkn 30009 df-clwwlknon 30072 |
| This theorem is referenced by: numclwlk1lem2 30354 numclwwlk3 30369 |
| Copyright terms: Public domain | W3C validator |