MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1 Structured version   Visualization version   GIF version

Theorem numclwwlk1 28725
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = ∅, but (𝑋𝐶2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 28712, needs not be in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 28733. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 28735. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐾(𝑤,𝑣,𝑛)

Proof of Theorem numclwwlk1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 27931 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
21ad2antlr 724 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USGraph)
3 simprl 768 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
4 simprr 770 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘3))
5 extwwlkfab.v . . . . 5 𝑉 = (Vtx‘𝐺)
6 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
7 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
85, 6, 7numclwwlk1lem2 28724 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
92, 3, 4, 8syl3anc 1370 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
10 hasheni 14062 . . 3 ((𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))))
119, 10syl 17 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))))
12 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
1312clwwlknonfin 28458 . . . . . 6 ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
145eleq1i 2829 . . . . . 6 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
157eleq1i 2829 . . . . . 6 (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
1613, 14, 153imtr4i 292 . . . . 5 (𝑉 ∈ Fin → 𝐹 ∈ Fin)
1716adantr 481 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐹 ∈ Fin)
1817adantr 481 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ∈ Fin)
195finrusgrfusgr 27932 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2019ancoms 459 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
21 fusgrfis 27697 . . . . . 6 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2220, 21syl 17 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (Edg‘𝐺) ∈ Fin)
2322adantr 481 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (Edg‘𝐺) ∈ Fin)
24 eqid 2738 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
255, 24nbusgrfi 27741 . . . 4 ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
262, 23, 3, 25syl3anc 1370 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
27 hashxp 14149 . . 3 ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))))
2818, 26, 27syl2anc 584 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))))
295rusgrpropnb 27950 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾))
30 oveq2 7283 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
3130fveqeq2d 6782 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3231rspccv 3558 . . . . . . . . . 10 (∀𝑥𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
33323ad2ant3 1134 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3429, 33syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾 → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3534adantl 482 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3635com12 32 . . . . . 6 (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3736adantr 481 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3837impcom 408 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)
3938oveq2d 7291 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · 𝐾))
40 hashcl 14071 . . . . 5 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
41 nn0cn 12243 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
4218, 40, 413syl 18 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐹) ∈ ℂ)
4320adantr 481 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FinUSGraph)
44 simplr 766 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 RegUSGraph 𝐾)
45 ne0i 4268 . . . . . . . 8 (𝑋𝑉𝑉 ≠ ∅)
4645adantr 481 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ≠ ∅)
4746adantl 482 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ≠ ∅)
485frusgrnn0 27938 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
4943, 44, 47, 48syl3anc 1370 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℕ0)
5049nn0cnd 12295 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
5142, 50mulcomd 10996 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) · 𝐾) = (𝐾 · (♯‘𝐹)))
5239, 51eqtrd 2778 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (♯‘𝐹)))
5311, 28, 523eqtrd 2782 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  c0 4256   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  cen 8730  Fincfn 8733  cc 10869   · cmul 10876  cmin 11205  2c2 12028  3c3 12029  0cn0 12233  0*cxnn0 12305  cuz 12582  chash 14044  Vtxcvtx 27366  Edgcedg 27417  USGraphcusgr 27519  FinUSGraphcfusgr 27683   NeighbVtx cnbgr 27699   RegUSGraph crusgr 27923  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-s2 14561  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-ushgr 27429  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-fusgr 27684  df-nbgr 27700  df-vtxdg 27833  df-rgr 27924  df-rusgr 27925  df-wwlks 28195  df-wwlksn 28196  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  numclwlk1lem2  28734  numclwwlk3  28749
  Copyright terms: Public domain W3C validator