MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1 Structured version   Visualization version   GIF version

Theorem numclwwlk1 30323
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = ∅, but (𝑋𝐶2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 30310, needs not be in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 30331. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 30333. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐾(𝑤,𝑣,𝑛)

Proof of Theorem numclwwlk1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 29528 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
21ad2antlr 727 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USGraph)
3 simprl 770 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
4 simprr 772 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘3))
5 extwwlkfab.v . . . . 5 𝑉 = (Vtx‘𝐺)
6 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
7 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
85, 6, 7numclwwlk1lem2 30322 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
92, 3, 4, 8syl3anc 1373 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
10 hasheni 14273 . . 3 ((𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))))
119, 10syl 17 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))))
12 eqid 2729 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
1312clwwlknonfin 30056 . . . . . 6 ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
145eleq1i 2819 . . . . . 6 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
157eleq1i 2819 . . . . . 6 (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
1613, 14, 153imtr4i 292 . . . . 5 (𝑉 ∈ Fin → 𝐹 ∈ Fin)
1716adantr 480 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐹 ∈ Fin)
1817adantr 480 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ∈ Fin)
195finrusgrfusgr 29529 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
2019ancoms 458 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
21 fusgrfis 29293 . . . . . 6 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2220, 21syl 17 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (Edg‘𝐺) ∈ Fin)
2322adantr 480 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (Edg‘𝐺) ∈ Fin)
24 eqid 2729 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
255, 24nbusgrfi 29337 . . . 4 ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
262, 23, 3, 25syl3anc 1373 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
27 hashxp 14359 . . 3 ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))))
2818, 26, 27syl2anc 584 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))))
295rusgrpropnb 29547 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾))
30 oveq2 7361 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
3130fveqeq2d 6834 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3231rspccv 3576 . . . . . . . . . 10 (∀𝑥𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
33323ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3429, 33syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾 → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3534adantl 481 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑋𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3635com12 32 . . . . . 6 (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3736adantr 480 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3837impcom 407 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)
3938oveq2d 7369 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · 𝐾))
40 hashcl 14281 . . . . 5 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
41 nn0cn 12412 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
4218, 40, 413syl 18 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐹) ∈ ℂ)
4320adantr 480 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FinUSGraph)
44 simplr 768 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 RegUSGraph 𝐾)
45 ne0i 4294 . . . . . . . 8 (𝑋𝑉𝑉 ≠ ∅)
4645adantr 480 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ≠ ∅)
4746adantl 481 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ≠ ∅)
485frusgrnn0 29535 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
4943, 44, 47, 48syl3anc 1373 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℕ0)
5049nn0cnd 12465 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
5142, 50mulcomd 11155 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) · 𝐾) = (𝐾 · (♯‘𝐹)))
5239, 51eqtrd 2764 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (♯‘𝐹)))
5311, 28, 523eqtrd 2768 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3396  c0 4286   class class class wbr 5095   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  cen 8876  Fincfn 8879  cc 11026   · cmul 11033  cmin 11365  2c2 12201  3c3 12202  0cn0 12402  0*cxnn0 12475  cuz 12753  chash 14255  Vtxcvtx 28959  Edgcedg 29010  USGraphcusgr 29112  FinUSGraphcfusgr 29279   NeighbVtx cnbgr 29295   RegUSGraph crusgr 29520  ClWWalksNOncclwwlknon 30049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-s2 14773  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-ushgr 29022  df-upgr 29045  df-umgr 29046  df-uspgr 29113  df-usgr 29114  df-fusgr 29280  df-nbgr 29296  df-vtxdg 29430  df-rgr 29521  df-rusgr 29522  df-wwlks 29793  df-wwlksn 29794  df-clwwlk 29944  df-clwwlkn 29987  df-clwwlknon 30050
This theorem is referenced by:  numclwlk1lem2  30332  numclwwlk3  30347
  Copyright terms: Public domain W3C validator