![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1 | Structured version Visualization version GIF version |
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = ∅, but (𝑋𝐶2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 27901, needs not be ∅ in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 27938. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 27940. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
Ref | Expression |
---|---|
numclwwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 27065 | . . . . 5 ⊢ (𝐺RegUSGraph𝐾 → 𝐺 ∈ USGraph) | |
2 | 1 | ad2antlr 715 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ USGraph) |
3 | simprl 759 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑋 ∈ 𝑉) | |
4 | simprr 761 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑁 ∈ (ℤ≥‘3)) | |
5 | extwwlkfab.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | extwwlkfab.c | . . . . 5 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
7 | extwwlkfab.f | . . . . 5 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
8 | 5, 6, 7 | numclwwlk1lem2 27923 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
9 | 2, 3, 4, 8 | syl3anc 1352 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
10 | hasheni 13522 | . . 3 ⊢ ((𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) |
12 | eqid 2773 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
13 | 12 | clwwlknonfin 27638 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
14 | 5 | eleq1i 2851 | . . . . . 6 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
15 | 7 | eleq1i 2851 | . . . . . 6 ⊢ (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
16 | 13, 14, 15 | 3imtr4i 284 | . . . . 5 ⊢ (𝑉 ∈ Fin → 𝐹 ∈ Fin) |
17 | 16 | adantr 473 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐹 ∈ Fin) |
18 | 17 | adantr 473 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐹 ∈ Fin) |
19 | 5 | finrusgrfusgr 27066 | . . . . . . 7 ⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
20 | 19 | ancoms 451 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FinUSGraph) |
21 | fusgrfis 26831 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (Edg‘𝐺) ∈ Fin) |
23 | 22 | adantr 473 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (Edg‘𝐺) ∈ Fin) |
24 | eqid 2773 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
25 | 5, 24 | nbusgrfi 26875 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋 ∈ 𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
26 | 2, 23, 3, 25 | syl3anc 1352 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
27 | hashxp 13607 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) | |
28 | 18, 26, 27 | syl2anc 576 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) |
29 | 5 | rusgrpropnb 27084 | . . . . . . . . 9 ⊢ (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾)) |
30 | oveq2 6983 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋)) | |
31 | 30 | fveqeq2d 6505 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑋 → ((♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
32 | 31 | rspccv 3527 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
33 | 32 | 3ad2ant3 1116 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
34 | 29, 33 | syl 17 | . . . . . . . 8 ⊢ (𝐺RegUSGraph𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
35 | 34 | adantl 474 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
36 | 35 | com12 32 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
37 | 36 | adantr 473 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
38 | 37 | impcom 399 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾) |
39 | 38 | oveq2d 6991 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · 𝐾)) |
40 | hashcl 13531 | . . . . 5 ⊢ (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0) | |
41 | nn0cn 11717 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ) | |
42 | 18, 40, 41 | 3syl 18 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐹) ∈ ℂ) |
43 | 20 | adantr 473 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ FinUSGraph) |
44 | simplr 757 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺RegUSGraph𝐾) | |
45 | ne0i 4181 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) | |
46 | 45 | adantr 473 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑉 ≠ ∅) |
47 | 46 | adantl 474 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑉 ≠ ∅) |
48 | 5 | frusgrnn0 27072 | . . . . . 6 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺RegUSGraph𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) |
49 | 43, 44, 47, 48 | syl3anc 1352 | . . . . 5 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐾 ∈ ℕ0) |
50 | 49 | nn0cnd 11768 | . . . 4 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐾 ∈ ℂ) |
51 | 42, 50 | mulcomd 10460 | . . 3 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · 𝐾) = (𝐾 · (♯‘𝐹))) |
52 | 39, 51 | eqtrd 2809 | . 2 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (♯‘𝐹))) |
53 | 11, 28, 52 | 3eqtrd 2813 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ≠ wne 2962 ∀wral 3083 {crab 3087 ∅c0 4173 class class class wbr 4926 × cxp 5402 ‘cfv 6186 (class class class)co 6975 ∈ cmpo 6977 ≈ cen 8302 Fincfn 8305 ℂcc 10332 · cmul 10339 − cmin 10669 2c2 11494 3c3 11495 ℕ0cn0 11706 ℕ0*cxnn0 11778 ℤ≥cuz 12057 ♯chash 13504 Vtxcvtx 26500 Edgcedg 26551 USGraphcusgr 26653 FinUSGraphcfusgr 26817 NeighbVtx cnbgr 26833 RegUSGraphcrusgr 27057 ClWWalksNOncclwwlknon 27631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-2o 7905 df-oadd 7908 df-er 8088 df-map 8207 df-pm 8208 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-dju 9123 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-xnn0 11779 df-z 11793 df-uz 12058 df-rp 12204 df-xadd 12324 df-fz 12708 df-fzo 12849 df-seq 13184 df-exp 13244 df-hash 13505 df-word 13672 df-lsw 13725 df-concat 13733 df-s1 13758 df-substr 13803 df-pfx 13852 df-s2 14071 df-vtx 26502 df-iedg 26503 df-edg 26552 df-uhgr 26562 df-ushgr 26563 df-upgr 26586 df-umgr 26587 df-uspgr 26654 df-usgr 26655 df-fusgr 26818 df-nbgr 26834 df-vtxdg 26967 df-rgr 27058 df-rusgr 27059 df-wwlks 27332 df-wwlksn 27333 df-clwwlk 27504 df-clwwlkn 27556 df-clwwlknon 27632 |
This theorem is referenced by: numclwlk1lem2 27939 numclwwlk3 27958 |
Copyright terms: Public domain | W3C validator |