![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextsubrg | Structured version Visualization version GIF version |
Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextsubrg.1 | ⊢ 𝑈 = (Base‘𝐹) |
Ref | Expression |
---|---|
fldextsubrg | ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldextsubrg.1 | . 2 ⊢ 𝑈 = (Base‘𝐹) | |
2 | fldextfld1 33397 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
3 | fldextfld2 33398 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
4 | brfldext 33395 | . . . . 5 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
5 | 2, 3, 4 | syl2anc 582 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
6 | 5 | ibi 266 | . . 3 ⊢ (𝐸/FldExt𝐹 → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
7 | 6 | simprd 494 | . 2 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
8 | 1, 7 | eqeltrid 2829 | 1 ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5143 ‘cfv 6542 (class class class)co 7415 Basecbs 17177 ↾s cress 17206 SubRingcsubrg 20508 Fieldcfield 20627 /FldExtcfldext 33386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-xp 5678 df-iota 6494 df-fv 6550 df-ov 7418 df-fldext 33390 |
This theorem is referenced by: fldextsralvec 33403 extdgcl 33404 extdggt0 33405 extdgmul 33409 extdg1id 33411 fldextchr 33413 |
Copyright terms: Public domain | W3C validator |