Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsubrg Structured version   Visualization version   GIF version

Theorem fldextsubrg 33248
Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypothesis
Ref Expression
fldextsubrg.1 𝑈 = (Base‘𝐹)
Assertion
Ref Expression
fldextsubrg (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))

Proof of Theorem fldextsubrg
StepHypRef Expression
1 fldextsubrg.1 . 2 𝑈 = (Base‘𝐹)
2 fldextfld1 33246 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
3 fldextfld2 33247 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
4 brfldext 33244 . . . . 5 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
52, 3, 4syl2anc 583 . . . 4 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
65ibi 267 . . 3 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
76simprd 495 . 2 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
81, 7eqeltrid 2831 1 (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   class class class wbr 5141  cfv 6537  (class class class)co 7405  Basecbs 17153  s cress 17182  SubRingcsubrg 20469  Fieldcfield 20588  /FldExtcfldext 33235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-iota 6489  df-fv 6545  df-ov 7408  df-fldext 33239
This theorem is referenced by:  fldextsralvec  33252  extdgcl  33253  extdggt0  33254  extdgmul  33258  extdg1id  33260  fldextchr  33262
  Copyright terms: Public domain W3C validator