Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsubrg Structured version   Visualization version   GIF version

Theorem fldextsubrg 33645
Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypothesis
Ref Expression
fldextsubrg.1 𝑈 = (Base‘𝐹)
Assertion
Ref Expression
fldextsubrg (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))

Proof of Theorem fldextsubrg
StepHypRef Expression
1 fldextsubrg.1 . 2 𝑈 = (Base‘𝐹)
2 fldextfld1 33643 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
3 fldextfld2 33644 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
4 brfldext 33641 . . . . 5 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
52, 3, 4syl2anc 584 . . . 4 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
65ibi 267 . . 3 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
76simprd 495 . 2 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
81, 7eqeltrid 2832 1 (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  SubRingcsubrg 20478  Fieldcfield 20639  /FldExtcfldext 33634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-iota 6464  df-fv 6519  df-ov 7390  df-fldext 33637
This theorem is referenced by:  fldextsdrg  33650  fldextsralvec  33651  extdgcl  33652  extdggt0  33653  extdgmul  33659  extdg1id  33661  fldextchr  33664
  Copyright terms: Public domain W3C validator