Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextsubrg | Structured version Visualization version GIF version |
Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextsubrg.1 | ⊢ 𝑈 = (Base‘𝐹) |
Ref | Expression |
---|---|
fldextsubrg | ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldextsubrg.1 | . 2 ⊢ 𝑈 = (Base‘𝐹) | |
2 | fldextfld1 31626 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
3 | fldextfld2 31627 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
4 | brfldext 31624 | . . . . 5 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
6 | 5 | ibi 266 | . . 3 ⊢ (𝐸/FldExt𝐹 → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
7 | 6 | simprd 495 | . 2 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
8 | 1, 7 | eqeltrid 2843 | 1 ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Fieldcfield 19907 SubRingcsubrg 19935 /FldExtcfldext 31615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-iota 6376 df-fv 6426 df-ov 7258 df-fldext 31619 |
This theorem is referenced by: fldextsralvec 31632 extdgcl 31633 extdggt0 31634 extdgmul 31638 extdg1id 31640 fldextchr 31642 |
Copyright terms: Public domain | W3C validator |