Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsubrg Structured version   Visualization version   GIF version

Theorem fldextsubrg 33399
Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Hypothesis
Ref Expression
fldextsubrg.1 𝑈 = (Base‘𝐹)
Assertion
Ref Expression
fldextsubrg (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))

Proof of Theorem fldextsubrg
StepHypRef Expression
1 fldextsubrg.1 . 2 𝑈 = (Base‘𝐹)
2 fldextfld1 33397 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
3 fldextfld2 33398 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
4 brfldext 33395 . . . . 5 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
52, 3, 4syl2anc 582 . . . 4 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
65ibi 266 . . 3 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
76simprd 494 . 2 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
81, 7eqeltrid 2829 1 (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   class class class wbr 5143  cfv 6542  (class class class)co 7415  Basecbs 17177  s cress 17206  SubRingcsubrg 20508  Fieldcfield 20627  /FldExtcfldext 33386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-iota 6494  df-fv 6550  df-ov 7418  df-fldext 33390
This theorem is referenced by:  fldextsralvec  33403  extdgcl  33404  extdggt0  33405  extdgmul  33409  extdg1id  33411  fldextchr  33413
  Copyright terms: Public domain W3C validator