![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextsubrg | Structured version Visualization version GIF version |
Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextsubrg.1 | ⊢ 𝑈 = (Base‘𝐹) |
Ref | Expression |
---|---|
fldextsubrg | ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldextsubrg.1 | . 2 ⊢ 𝑈 = (Base‘𝐹) | |
2 | fldextfld1 33538 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
3 | fldextfld2 33539 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
4 | brfldext 33536 | . . . . 5 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
5 | 2, 3, 4 | syl2anc 582 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
6 | 5 | ibi 266 | . . 3 ⊢ (𝐸/FldExt𝐹 → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
7 | 6 | simprd 494 | . 2 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
8 | 1, 7 | eqeltrid 2830 | 1 ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 ↾s cress 17242 SubRingcsubrg 20551 Fieldcfield 20708 /FldExtcfldext 33527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-xp 5688 df-iota 6506 df-fv 6562 df-ov 7427 df-fldext 33531 |
This theorem is referenced by: fldextsralvec 33544 extdgcl 33545 extdggt0 33546 extdgmul 33550 extdg1id 33552 fldextchr 33555 |
Copyright terms: Public domain | W3C validator |