| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdggt0 | Structured version Visualization version GIF version | ||
| Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdggt0 | ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 33651 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 2 | isfld 20655 | . . . . . 6 ⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . . . . 5 ⊢ (𝐸 ∈ Field → 𝐸 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ DivRing) |
| 5 | fldextress 33655 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | |
| 6 | fldextfld2 33652 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 7 | isfld 20655 | . . . . . . 7 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 8 | 7 | simplbi 497 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ DivRing) |
| 10 | 5, 9 | eqeltrrd 2830 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸 ↾s (Base‘𝐹)) ∈ DivRing) |
| 11 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 12 | 11 | fldextsubrg 33653 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
| 13 | eqid 2730 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) | |
| 14 | eqid 2730 | . . . . 5 ⊢ (𝐸 ↾s (Base‘𝐹)) = (𝐸 ↾s (Base‘𝐹)) | |
| 15 | 13, 14 | sralvec 33589 | . . . 4 ⊢ ((𝐸 ∈ DivRing ∧ (𝐸 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) |
| 16 | 4, 10, 12, 15 | syl3anc 1373 | . . 3 ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) |
| 17 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 18 | 17 | subrgss 20487 | . . . . 5 ⊢ ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸)) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸)) |
| 20 | 13, 17 | sradrng 33586 | . . . 4 ⊢ ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) |
| 21 | 4, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) |
| 22 | drngdimgt0 33622 | . . 3 ⊢ ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 23 | 16, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐸/FldExt𝐹 → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 24 | extdgval 33657 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 25 | 23, 24 | breqtrrd 5143 | 1 ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3922 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 0cc0 11086 < clt 11226 Basecbs 17185 ↾s cress 17206 CRingccrg 20149 SubRingcsubrg 20484 DivRingcdr 20644 Fieldcfield 20645 LVecclvec 21015 subringAlg csra 21084 dimcldim 33602 /FldExtcfldext 33642 [:]cextdg 33644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-reg 9563 ax-inf2 9612 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-rpss 7706 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9481 df-r1 9735 df-rank 9736 df-dju 9872 df-card 9910 df-acn 9913 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-xnn0 12532 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-hash 14306 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ocomp 17247 df-0g 17410 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-proset 18261 df-drs 18262 df-poset 18280 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-nzr 20428 df-subrg 20485 df-drng 20646 df-field 20647 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lbs 20988 df-lvec 21016 df-sra 21086 df-lindf 21721 df-linds 21722 df-dim 33603 df-fldext 33645 df-extdg 33646 |
| This theorem is referenced by: finexttrb 33668 fldext2rspun 33685 rtelextdg2 33725 constrext2chnlem 33748 |
| Copyright terms: Public domain | W3C validator |