Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdggt0 Structured version   Visualization version   GIF version

Theorem extdggt0 33665
Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
extdggt0 (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹))

Proof of Theorem extdggt0
StepHypRef Expression
1 fldextfld1 33655 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 isfld 20653 . . . . . 6 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
32simplbi 497 . . . . 5 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
41, 3syl 17 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ DivRing)
5 fldextress 33659 . . . . 5 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
6 fldextfld2 33656 . . . . . 6 (𝐸/FldExt𝐹𝐹 ∈ Field)
7 isfld 20653 . . . . . . 7 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
87simplbi 497 . . . . . 6 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
96, 8syl 17 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ DivRing)
105, 9eqeltrrd 2832 . . . 4 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) ∈ DivRing)
11 eqid 2731 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1211fldextsubrg 33657 . . . 4 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
13 eqid 2731 . . . . 5 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
14 eqid 2731 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
1513, 14sralvec 33592 . . . 4 ((𝐸 ∈ DivRing ∧ (𝐸s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
164, 10, 12, 15syl3anc 1373 . . 3 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
17 eqid 2731 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
1817subrgss 20485 . . . . 5 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸))
1912, 18syl 17 . . . 4 (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸))
2013, 17sradrng 33589 . . . 4 ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing)
214, 19, 20syl2anc 584 . . 3 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing)
22 drngdimgt0 33626 . . 3 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
2316, 21, 22syl2anc 584 . 2 (𝐸/FldExt𝐹 → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
24 extdgval 33661 . 2 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
2523, 24breqtrrd 5119 1 (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  0cc0 11003   < clt 11143  Basecbs 17117  s cress 17138  CRingccrg 20150  SubRingcsubrg 20482  DivRingcdr 20642  Fieldcfield 20643  LVecclvec 21034  subringAlg csra 21103  dimcldim 33606  /FldExtcfldext 33646  [:]cextdg 33648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-r1 9654  df-rank 9655  df-dju 9791  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ocomp 17179  df-0g 17342  df-mre 17485  df-mrc 17486  df-mri 17487  df-acs 17488  df-proset 18197  df-drs 18198  df-poset 18216  df-ipo 18431  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20426  df-subrg 20483  df-drng 20644  df-field 20645  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lbs 21007  df-lvec 21035  df-sra 21105  df-lindf 21741  df-linds 21742  df-dim 33607  df-fldext 33649  df-extdg 33650
This theorem is referenced by:  finexttrb  33673  fldext2rspun  33690  rtelextdg2  33735  constrext2chnlem  33758
  Copyright terms: Public domain W3C validator