Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extdggt0 | Structured version Visualization version GIF version |
Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
extdggt0 | ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldextfld1 32022 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
2 | isfld 20105 | . . . . . 6 ⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) | |
3 | 2 | simplbi 498 | . . . . 5 ⊢ (𝐸 ∈ Field → 𝐸 ∈ DivRing) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ DivRing) |
5 | fldextress 32025 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | |
6 | fldextfld2 32023 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
7 | isfld 20105 | . . . . . . 7 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
8 | 7 | simplbi 498 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ DivRing) |
10 | 5, 9 | eqeltrrd 2838 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸 ↾s (Base‘𝐹)) ∈ DivRing) |
11 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
12 | 11 | fldextsubrg 32024 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
13 | eqid 2736 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) | |
14 | eqid 2736 | . . . . 5 ⊢ (𝐸 ↾s (Base‘𝐹)) = (𝐸 ↾s (Base‘𝐹)) | |
15 | 13, 14 | sralvec 31973 | . . . 4 ⊢ ((𝐸 ∈ DivRing ∧ (𝐸 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) |
16 | 4, 10, 12, 15 | syl3anc 1370 | . . 3 ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) |
17 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
18 | 17 | subrgss 20131 | . . . . 5 ⊢ ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸)) |
19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸)) |
20 | 13, 17 | sradrng 31971 | . . . 4 ⊢ ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) |
21 | 4, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) |
22 | drngdimgt0 31999 | . . 3 ⊢ ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
23 | 16, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐸/FldExt𝐹 → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
24 | extdgval 32027 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
25 | 23, 24 | breqtrrd 5121 | 1 ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6480 (class class class)co 7338 0cc0 10973 < clt 11111 Basecbs 17010 ↾s cress 17039 CRingccrg 19880 DivRingcdr 20094 Fieldcfield 20095 SubRingcsubrg 20126 LVecclvec 20471 subringAlg csra 20537 dimcldim 31982 /FldExtcfldext 32011 [:]cextdg 32014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-reg 9450 ax-inf2 9499 ax-ac2 10321 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-rpss 7639 df-om 7782 df-1st 7900 df-2nd 7901 df-tpos 8113 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-oadd 8372 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-oi 9368 df-r1 9622 df-rank 9623 df-dju 9759 df-card 9797 df-acn 9800 df-ac 9974 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-xnn0 12408 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-hash 14147 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ocomp 17081 df-0g 17250 df-mre 17393 df-mrc 17394 df-mri 17395 df-acs 17396 df-proset 18111 df-drs 18112 df-poset 18129 df-ipo 18344 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-drng 20096 df-field 20097 df-subrg 20128 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lbs 20444 df-lvec 20472 df-sra 20541 df-nzr 20636 df-lindf 21120 df-linds 21121 df-dim 31983 df-fldext 32015 df-extdg 32016 |
This theorem is referenced by: finexttrb 32035 |
Copyright terms: Public domain | W3C validator |