| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdggt0 | Structured version Visualization version GIF version | ||
| Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdggt0 | ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 33681 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 2 | isfld 20657 | . . . . . 6 ⊢ (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . . . . 5 ⊢ (𝐸 ∈ Field → 𝐸 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ DivRing) |
| 5 | fldextress 33685 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | |
| 6 | fldextfld2 33682 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 7 | isfld 20657 | . . . . . . 7 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 8 | 7 | simplbi 497 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ DivRing) |
| 10 | 5, 9 | eqeltrrd 2834 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸 ↾s (Base‘𝐹)) ∈ DivRing) |
| 11 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 12 | 11 | fldextsubrg 33683 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
| 13 | eqid 2733 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)) | |
| 14 | eqid 2733 | . . . . 5 ⊢ (𝐸 ↾s (Base‘𝐹)) = (𝐸 ↾s (Base‘𝐹)) | |
| 15 | 13, 14 | sralvec 33618 | . . . 4 ⊢ ((𝐸 ∈ DivRing ∧ (𝐸 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) |
| 16 | 4, 10, 12, 15 | syl3anc 1373 | . . 3 ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) |
| 17 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 18 | 17 | subrgss 20489 | . . . . 5 ⊢ ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸)) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸)) |
| 20 | 13, 17 | sradrng 33615 | . . . 4 ⊢ ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) |
| 21 | 4, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) |
| 22 | drngdimgt0 33652 | . . 3 ⊢ ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 23 | 16, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐸/FldExt𝐹 → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 24 | extdgval 33687 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | |
| 25 | 23, 24 | breqtrrd 5121 | 1 ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 0cc0 11013 < clt 11153 Basecbs 17122 ↾s cress 17143 CRingccrg 20154 SubRingcsubrg 20486 DivRingcdr 20646 Fieldcfield 20647 LVecclvec 21038 subringAlg csra 21107 dimcldim 33632 /FldExtcfldext 33672 [:]cextdg 33674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-r1 9664 df-rank 9665 df-dju 9801 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ocomp 17184 df-0g 17347 df-mre 17490 df-mrc 17491 df-mri 17492 df-acs 17493 df-proset 18202 df-drs 18203 df-poset 18221 df-ipo 18436 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-nzr 20430 df-subrg 20487 df-drng 20648 df-field 20649 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lbs 21011 df-lvec 21039 df-sra 21109 df-lindf 21745 df-linds 21746 df-dim 33633 df-fldext 33675 df-extdg 33676 |
| This theorem is referenced by: finexttrb 33699 fldext2rspun 33716 rtelextdg2 33761 constrext2chnlem 33784 |
| Copyright terms: Public domain | W3C validator |