Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdggt0 Structured version   Visualization version   GIF version

Theorem extdggt0 33691
Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
extdggt0 (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹))

Proof of Theorem extdggt0
StepHypRef Expression
1 fldextfld1 33681 . . . . 5 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 isfld 20657 . . . . . 6 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
32simplbi 497 . . . . 5 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
41, 3syl 17 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ DivRing)
5 fldextress 33685 . . . . 5 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
6 fldextfld2 33682 . . . . . 6 (𝐸/FldExt𝐹𝐹 ∈ Field)
7 isfld 20657 . . . . . . 7 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
87simplbi 497 . . . . . 6 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
96, 8syl 17 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ DivRing)
105, 9eqeltrrd 2834 . . . 4 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) ∈ DivRing)
11 eqid 2733 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1211fldextsubrg 33683 . . . 4 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
13 eqid 2733 . . . . 5 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
14 eqid 2733 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
1513, 14sralvec 33618 . . . 4 ((𝐸 ∈ DivRing ∧ (𝐸s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
164, 10, 12, 15syl3anc 1373 . . 3 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
17 eqid 2733 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
1817subrgss 20489 . . . . 5 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸))
1912, 18syl 17 . . . 4 (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸))
2013, 17sradrng 33615 . . . 4 ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing)
214, 19, 20syl2anc 584 . . 3 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing)
22 drngdimgt0 33652 . . 3 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ DivRing) → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
2316, 21, 22syl2anc 584 . 2 (𝐸/FldExt𝐹 → 0 < (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
24 extdgval 33687 . 2 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
2523, 24breqtrrd 5121 1 (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wss 3898   class class class wbr 5093  cfv 6486  (class class class)co 7352  0cc0 11013   < clt 11153  Basecbs 17122  s cress 17143  CRingccrg 20154  SubRingcsubrg 20486  DivRingcdr 20646  Fieldcfield 20647  LVecclvec 21038  subringAlg csra 21107  dimcldim 33632  /FldExtcfldext 33672  [:]cextdg 33674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9485  ax-inf2 9538  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rpss 7662  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-r1 9664  df-rank 9665  df-dju 9801  df-card 9839  df-acn 9842  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ocomp 17184  df-0g 17347  df-mre 17490  df-mrc 17491  df-mri 17492  df-acs 17493  df-proset 18202  df-drs 18203  df-poset 18221  df-ipo 18436  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-nzr 20430  df-subrg 20487  df-drng 20648  df-field 20649  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lbs 21011  df-lvec 21039  df-sra 21109  df-lindf 21745  df-linds 21746  df-dim 33633  df-fldext 33675  df-extdg 33676
This theorem is referenced by:  finexttrb  33699  fldext2rspun  33716  rtelextdg2  33761  constrext2chnlem  33784
  Copyright terms: Public domain W3C validator