Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgcl Structured version   Visualization version   GIF version

Theorem extdgcl 33628
Description: Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
extdgcl (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*)

Proof of Theorem extdgcl
StepHypRef Expression
1 extdgval 33625 . 2 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
2 fldextfld1 33619 . . . . . 6 (𝐸/FldExt𝐹𝐸 ∈ Field)
3 isfld 20643 . . . . . 6 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
42, 3sylib 218 . . . . 5 (𝐸/FldExt𝐹 → (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
54simpld 494 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ DivRing)
6 fldextress 33623 . . . . 5 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
7 fldextfld2 33620 . . . . . . 7 (𝐸/FldExt𝐹𝐹 ∈ Field)
8 isfld 20643 . . . . . . 7 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
97, 8sylib 218 . . . . . 6 (𝐸/FldExt𝐹 → (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
109simpld 494 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ DivRing)
116, 10eqeltrrd 2829 . . . 4 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) ∈ DivRing)
12 eqid 2729 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1312fldextsubrg 33621 . . . 4 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
14 eqid 2729 . . . . 5 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
15 eqid 2729 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
1614, 15sralvec 33557 . . . 4 ((𝐸 ∈ DivRing ∧ (𝐸s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
175, 11, 13, 16syl3anc 1373 . . 3 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
18 dimcl 33574 . . 3 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ ℕ0*)
1917, 18syl 17 . 2 (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ ℕ0*)
201, 19eqeltrd 2828 1 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  0*cxnn0 12475  Basecbs 17138  s cress 17159  CRingccrg 20137  SubRingcsubrg 20472  DivRingcdr 20632  Fieldcfield 20633  LVecclvec 21024  subringAlg csra 21093  dimcldim 33570  /FldExtcfldext 33610  [:]cextdg 33612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-0g 17363  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-subrg 20473  df-drng 20634  df-field 20635  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lbs 20997  df-lvec 21025  df-sra 21095  df-dim 33571  df-fldext 33613  df-extdg 33614
This theorem is referenced by:  finexttrb  33636  fldextrspundglemul  33650  fldextrspundgdvdslem  33651  fldextrspundgdvds  33652  rtelextdg2  33693  constrext2chnlem  33716
  Copyright terms: Public domain W3C validator