![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftel1 | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5457 | . . . . 5 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
2 | eqid 2726 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
3 | 2 | elrnmpt1 5950 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
4 | 1, 3 | mpan2 688 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
6 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
7 | 5, 6 | eleqtrrdi 2838 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ 𝐹) |
8 | df-br 5142 | . 2 ⊢ (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 class class class wbr 5141 ↦ cmpt 5224 ran crn 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-mpt 5225 df-cnv 5677 df-dm 5679 df-rn 5680 |
This theorem is referenced by: fliftfun 7304 qliftel1 8794 |
Copyright terms: Public domain | W3C validator |