Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fliftel1 | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5324 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | eqid 2758 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
3 | 2 | elrnmpt1 5799 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 〈𝐴, 𝐵〉 ∈ V) → 〈𝐴, 𝐵〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
4 | 1, 3 | mpan2 690 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → 〈𝐴, 𝐵〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
5 | 4 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
6 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
7 | 5, 6 | eleqtrrdi 2863 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ 𝐹) |
8 | df-br 5033 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
9 | 7, 8 | sylibr 237 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4528 class class class wbr 5032 ↦ cmpt 5112 ran crn 5525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rex 3076 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-mpt 5113 df-cnv 5532 df-dm 5534 df-rn 5535 |
This theorem is referenced by: fliftfun 7059 qliftel1 8391 |
Copyright terms: Public domain | W3C validator |