MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftel1 Structured version   Visualization version   GIF version

Theorem fliftel1 7337
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel1
StepHypRef Expression
1 opex 5478 . . . . 5 𝐴, 𝐵⟩ ∈ V
2 eqid 2737 . . . . . 6 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32elrnmpt1 5978 . . . . 5 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
41, 3mpan2 691 . . . 4 (𝑥𝑋 → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
54adantl 481 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
6 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
75, 6eleqtrrdi 2852 . 2 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
8 df-br 5152 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
97, 8sylibr 234 1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cop 4640   class class class wbr 5151  cmpt 5234  ran crn 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-mpt 5235  df-cnv 5701  df-dm 5703  df-rn 5704
This theorem is referenced by:  fliftfun  7339  qliftel1  8849
  Copyright terms: Public domain W3C validator