MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftel1 Structured version   Visualization version   GIF version

Theorem fliftel1 7285
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel1
StepHypRef Expression
1 opex 5424 . . . . 5 𝐴, 𝐵⟩ ∈ V
2 eqid 2729 . . . . . 6 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32elrnmpt1 5924 . . . . 5 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
41, 3mpan2 691 . . . 4 (𝑥𝑋 → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
54adantl 481 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
6 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
75, 6eleqtrrdi 2839 . 2 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
8 df-br 5108 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
97, 8sylibr 234 1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107  cmpt 5188  ran crn 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  fliftfun  7287  qliftel1  8774
  Copyright terms: Public domain W3C validator