![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftel1 | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . . . 5 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
2 | eqid 2732 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
3 | 2 | elrnmpt1 5957 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
4 | 1, 3 | mpan2 689 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
6 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
7 | 5, 6 | eleqtrrdi 2844 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ 𝐹) |
8 | df-br 5149 | . 2 ⊢ (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 class class class wbr 5148 ↦ cmpt 5231 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: fliftfun 7308 qliftel1 8794 |
Copyright terms: Public domain | W3C validator |