MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1 Structured version   Visualization version   GIF version

Theorem elrnmpt1 5940
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmpt1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3463 . . . 4 𝑥 ∈ V
2 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
3 csbeq1a 3888 . . . . . . 7 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
42, 3eleq12d 2828 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
5 csbeq1a 3888 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65biantrud 531 . . . . . 6 (𝑥 = 𝑧 → (𝑧𝑧 / 𝑥𝐴 ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
74, 6bitr2d 280 . . . . 5 (𝑥 = 𝑧 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
87equcoms 2019 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
91, 8spcev 3585 . . 3 (𝑥𝐴 → ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵))
10 df-rex 3061 . . . . . 6 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
11 nfv 1914 . . . . . . 7 𝑧(𝑥𝐴𝑦 = 𝐵)
12 nfcsb1v 3898 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
1312nfcri 2890 . . . . . . . 8 𝑥 𝑧𝑧 / 𝑥𝐴
14 nfcsb1v 3898 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2916 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐵
1613, 15nfan 1899 . . . . . . 7 𝑥(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)
175eqeq2d 2746 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
184, 17anbi12d 632 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)))
1911, 16, 18cbvexv1 2343 . . . . . 6 (∃𝑥(𝑥𝐴𝑦 = 𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
2010, 19bitri 275 . . . . 5 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
21 eqeq1 2739 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
2221anbi2d 630 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2322exbidv 1921 . . . . 5 (𝑦 = 𝐵 → (∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2420, 23bitrid 283 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
25 rnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
2625rnmpt 5937 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
2724, 26elab2g 3659 . . 3 (𝐵𝑉 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
289, 27imbitrrid 246 . 2 (𝐵𝑉 → (𝑥𝐴𝐵 ∈ ran 𝐹))
2928impcom 407 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  csb 3874  cmpt 5201  ran crn 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-cnv 5662  df-dm 5664  df-rn 5665
This theorem is referenced by:  elrnmpt1d  5944  fliftel1  7303  minveclem4  25384  minvecolem4  30861  rexunirn  32473  esum2d  34124  exrecfnlem  37397  totbndbnd  37813  rrnequiv  37859  suprnmpt  45198  disjf1o  45215  disjinfi  45216  choicefi  45224  suprubrnmpt  45277  supxrleubrnmpt  45433  suprleubrnmpt  45449  infrnmptle  45450  infxrunb3rnmpt  45455  supminfrnmpt  45472  infxrgelbrnmpt  45481  fourierdlem31  46167  ioorrnopnlem  46333  sge0supre  46418  sge0gerp  46424  sge0iunmpt  46447  sge0rernmpt  46451  sge0reuz  46476  meadjiunlem  46494  iunhoiioolem  46704  vonioolem1  46709  smfpimcclem  46836
  Copyright terms: Public domain W3C validator