MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1 Structured version   Visualization version   GIF version

Theorem elrnmpt1 5867
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmpt1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . 4 𝑥 ∈ V
2 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
3 csbeq1a 3846 . . . . . . 7 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
42, 3eleq12d 2833 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
5 csbeq1a 3846 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65biantrud 532 . . . . . 6 (𝑥 = 𝑧 → (𝑧𝑧 / 𝑥𝐴 ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
74, 6bitr2d 279 . . . . 5 (𝑥 = 𝑧 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
87equcoms 2023 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
91, 8spcev 3545 . . 3 (𝑥𝐴 → ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵))
10 df-rex 3070 . . . . . 6 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
11 nfv 1917 . . . . . . 7 𝑧(𝑥𝐴𝑦 = 𝐵)
12 nfcsb1v 3857 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
1312nfcri 2894 . . . . . . . 8 𝑥 𝑧𝑧 / 𝑥𝐴
14 nfcsb1v 3857 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2924 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐵
1613, 15nfan 1902 . . . . . . 7 𝑥(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)
175eqeq2d 2749 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
184, 17anbi12d 631 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)))
1911, 16, 18cbvexv1 2339 . . . . . 6 (∃𝑥(𝑥𝐴𝑦 = 𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
2010, 19bitri 274 . . . . 5 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
21 eqeq1 2742 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
2221anbi2d 629 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2322exbidv 1924 . . . . 5 (𝑦 = 𝐵 → (∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2420, 23bitrid 282 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
25 rnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
2625rnmpt 5864 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
2724, 26elab2g 3611 . . 3 (𝐵𝑉 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
289, 27syl5ibr 245 . 2 (𝐵𝑉 → (𝑥𝐴𝐵 ∈ ran 𝐹))
2928impcom 408 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  csb 3832  cmpt 5157  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  fliftel1  7181  minveclem4  24596  minvecolem4  29242  rexunirn  30840  esum2d  32061  exrecfnlem  35550  totbndbnd  35947  rrnequiv  35993  suprnmpt  42710  disjf1o  42729  disjinfi  42731  choicefi  42740  elrnmpt1d  42773  suprubrnmpt  42799  supxrleubrnmpt  42946  suprleubrnmpt  42962  infrnmptle  42963  infxrunb3rnmpt  42968  supminfrnmpt  42985  infxrgelbrnmpt  42994  fourierdlem31  43679  ioorrnopnlem  43845  sge0f1o  43920  sge0supre  43927  sge0gerp  43933  sge0iunmpt  43956  sge0rernmpt  43960  sge0reuz  43985  meadjiunlem  44003  iunhoiioolem  44213  vonioolem1  44218  smfpimcclem  44340
  Copyright terms: Public domain W3C validator