MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1 Structured version   Visualization version   GIF version

Theorem elrnmpt1 5927
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmpt1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . 4 𝑥 ∈ V
2 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
3 csbeq1a 3879 . . . . . . 7 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
42, 3eleq12d 2823 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
5 csbeq1a 3879 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65biantrud 531 . . . . . 6 (𝑥 = 𝑧 → (𝑧𝑧 / 𝑥𝐴 ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
74, 6bitr2d 280 . . . . 5 (𝑥 = 𝑧 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
87equcoms 2020 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵) ↔ 𝑥𝐴))
91, 8spcev 3575 . . 3 (𝑥𝐴 → ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵))
10 df-rex 3055 . . . . . 6 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
11 nfv 1914 . . . . . . 7 𝑧(𝑥𝐴𝑦 = 𝐵)
12 nfcsb1v 3889 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
1312nfcri 2884 . . . . . . . 8 𝑥 𝑧𝑧 / 𝑥𝐴
14 nfcsb1v 3889 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2910 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐵
1613, 15nfan 1899 . . . . . . 7 𝑥(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)
175eqeq2d 2741 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
184, 17anbi12d 632 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵)))
1911, 16, 18cbvexv1 2340 . . . . . 6 (∃𝑥(𝑥𝐴𝑦 = 𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
2010, 19bitri 275 . . . . 5 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵))
21 eqeq1 2734 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
2221anbi2d 630 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ (𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2322exbidv 1921 . . . . 5 (𝑦 = 𝐵 → (∃𝑧(𝑧𝑧 / 𝑥𝐴𝑦 = 𝑧 / 𝑥𝐵) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
2420, 23bitrid 283 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
25 rnmpt.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
2625rnmpt 5924 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
2724, 26elab2g 3650 . . 3 (𝐵𝑉 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴𝐵 = 𝑧 / 𝑥𝐵)))
289, 27imbitrrid 246 . 2 (𝐵𝑉 → (𝑥𝐴𝐵 ∈ ran 𝐹))
2928impcom 407 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  csb 3865  cmpt 5191  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  elrnmpt1d  5931  fliftel1  7288  minveclem4  25339  minvecolem4  30816  rexunirn  32428  esum2d  34090  exrecfnlem  37374  totbndbnd  37790  rrnequiv  37836  suprnmpt  45175  disjf1o  45192  disjinfi  45193  choicefi  45201  suprubrnmpt  45254  supxrleubrnmpt  45409  suprleubrnmpt  45425  infrnmptle  45426  infxrunb3rnmpt  45431  supminfrnmpt  45448  infxrgelbrnmpt  45457  fourierdlem31  46143  ioorrnopnlem  46309  sge0supre  46394  sge0gerp  46400  sge0iunmpt  46423  sge0rernmpt  46427  sge0reuz  46452  meadjiunlem  46470  iunhoiioolem  46680  vonioolem1  46685  smfpimcclem  46812
  Copyright terms: Public domain W3C validator