MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftel1 Structured version   Visualization version   GIF version

Theorem qliftel1 8661
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftel1 ((𝜑𝑥𝑋) → [𝑥]𝑅𝐹𝐴)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftel1
StepHypRef Expression
1 qlift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . 3 (𝜑𝑋𝑉)
51, 2, 3, 4qliftlem 8658 . 2 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftel1 7237 1 ((𝜑𝑥𝑋) → [𝑥]𝑅𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cop 4579   class class class wbr 5092  cmpt 5175  ran crn 5621   Er wer 8566  [cec 8567   / cqs 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-xp 5626  df-rel 5627  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-er 8569  df-ec 8571  df-qs 8575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator