Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qliftel1 | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
qliftel1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | qliftlem 8561 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | 1, 5, 2 | fliftel1 7174 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 〈cop 4572 class class class wbr 5078 ↦ cmpt 5161 ran crn 5589 Er wer 8469 [cec 8470 / cqs 8471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-er 8472 df-ec 8474 df-qs 8478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |