![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxmfval | Structured version Visualization version GIF version |
Description: The value of the Euclidean metric. Compare with rrnval 34113. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} |
rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
rrxmfval | ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) | |
2 | fvex 6424 | . . . . 5 ⊢ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) ∈ V | |
3 | 1, 2 | fnmpt2i 7475 | . . . 4 ⊢ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) Fn ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼))) |
4 | eqid 2799 | . . . . . . 7 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
5 | eqid 2799 | . . . . . . 7 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
6 | 4, 5 | rrxds 23519 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘(ℝ^‘𝐼))) |
7 | rrxmval.d | . . . . . 6 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
8 | 6, 7 | syl6reqr 2852 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
9 | 4, 5 | rrxbase 23514 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘(ℝ^‘𝐼)) = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0}) |
10 | rrxmval.1 | . . . . . . 7 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} | |
11 | 9, 10 | syl6reqr 2852 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑋 = (Base‘(ℝ^‘𝐼))) |
12 | 11 | sqxpeqd 5344 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑋 × 𝑋) = ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼)))) |
13 | 8, 12 | fneq12d 6194 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐷 Fn (𝑋 × 𝑋) ↔ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) Fn ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼))))) |
14 | 3, 13 | mpbiri 250 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐷 Fn (𝑋 × 𝑋)) |
15 | fnov 7002 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) ↔ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔))) | |
16 | 14, 15 | sylib 210 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔))) |
17 | 10, 7 | rrxmval 23527 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓𝐷𝑔) = (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
18 | 17 | mpt2eq3dva 6953 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔)) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
19 | 16, 18 | eqtrd 2833 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {crab 3093 ∪ cun 3767 class class class wbr 4843 ↦ cmpt 4922 × cxp 5310 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 supp csupp 7532 ↑𝑚 cmap 8095 finSupp cfsupp 8517 ℝcr 10223 0cc0 10224 − cmin 10556 2c2 11368 ↑cexp 13114 √csqrt 14314 Σcsu 14757 Basecbs 16184 distcds 16276 Σg cgsu 16416 ℝfldcrefld 20273 ℝ^crrx 23509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-rp 12075 df-fz 12581 df-fzo 12721 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-0g 16417 df-gsum 16418 df-prds 16423 df-pws 16425 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-grp 17741 df-minusg 17742 df-sbg 17743 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-cring 18866 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-dvr 18999 df-rnghom 19033 df-drng 19067 df-field 19068 df-subrg 19096 df-staf 19163 df-srng 19164 df-lmod 19183 df-lss 19251 df-sra 19495 df-rgmod 19496 df-cnfld 20069 df-refld 20274 df-dsmm 20401 df-frlm 20416 df-nm 22715 df-tng 22717 df-tcph 23296 df-rrx 23511 |
This theorem is referenced by: rrxmet 23530 |
Copyright terms: Public domain | W3C validator |