MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmfval Structured version   Visualization version   GIF version

Theorem rrxmfval 24922
Description: The value of the Euclidean metric. Compare with rrnval 36690. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0}
rrxmval.d 𝐷 = (distβ€˜(ℝ^β€˜πΌ))
Assertion
Ref Expression
rrxmfval (𝐼 ∈ 𝑉 β†’ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ ((𝑓 supp 0) βˆͺ (𝑔 supp 0))(((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2))))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑓,β„Ž,π‘˜,𝑔,𝐼   𝑓,𝑉,𝑔,β„Ž,π‘˜   𝑓,𝑋,𝑔,π‘˜
Allowed substitution hints:   𝐷(β„Ž,π‘˜)   𝑋(β„Ž)

Proof of Theorem rrxmfval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . 5 (𝑓 ∈ (Baseβ€˜(ℝ^β€˜πΌ)), 𝑔 ∈ (Baseβ€˜(ℝ^β€˜πΌ)) ↦ (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2))))) = (𝑓 ∈ (Baseβ€˜(ℝ^β€˜πΌ)), 𝑔 ∈ (Baseβ€˜(ℝ^β€˜πΌ)) ↦ (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2)))))
2 fvex 6904 . . . . 5 (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2)))) ∈ V
31, 2fnmpoi 8055 . . . 4 (𝑓 ∈ (Baseβ€˜(ℝ^β€˜πΌ)), 𝑔 ∈ (Baseβ€˜(ℝ^β€˜πΌ)) ↦ (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2))))) Fn ((Baseβ€˜(ℝ^β€˜πΌ)) Γ— (Baseβ€˜(ℝ^β€˜πΌ)))
4 rrxmval.d . . . . . 6 𝐷 = (distβ€˜(ℝ^β€˜πΌ))
5 eqid 2732 . . . . . . 7 (ℝ^β€˜πΌ) = (ℝ^β€˜πΌ)
6 eqid 2732 . . . . . . 7 (Baseβ€˜(ℝ^β€˜πΌ)) = (Baseβ€˜(ℝ^β€˜πΌ))
75, 6rrxds 24909 . . . . . 6 (𝐼 ∈ 𝑉 β†’ (𝑓 ∈ (Baseβ€˜(ℝ^β€˜πΌ)), 𝑔 ∈ (Baseβ€˜(ℝ^β€˜πΌ)) ↦ (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2))))) = (distβ€˜(ℝ^β€˜πΌ)))
84, 7eqtr4id 2791 . . . . 5 (𝐼 ∈ 𝑉 β†’ 𝐷 = (𝑓 ∈ (Baseβ€˜(ℝ^β€˜πΌ)), 𝑔 ∈ (Baseβ€˜(ℝ^β€˜πΌ)) ↦ (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2))))))
9 rrxmval.1 . . . . . . 7 𝑋 = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0}
105, 6rrxbase 24904 . . . . . . 7 (𝐼 ∈ 𝑉 β†’ (Baseβ€˜(ℝ^β€˜πΌ)) = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0})
119, 10eqtr4id 2791 . . . . . 6 (𝐼 ∈ 𝑉 β†’ 𝑋 = (Baseβ€˜(ℝ^β€˜πΌ)))
1211sqxpeqd 5708 . . . . 5 (𝐼 ∈ 𝑉 β†’ (𝑋 Γ— 𝑋) = ((Baseβ€˜(ℝ^β€˜πΌ)) Γ— (Baseβ€˜(ℝ^β€˜πΌ))))
138, 12fneq12d 6644 . . . 4 (𝐼 ∈ 𝑉 β†’ (𝐷 Fn (𝑋 Γ— 𝑋) ↔ (𝑓 ∈ (Baseβ€˜(ℝ^β€˜πΌ)), 𝑔 ∈ (Baseβ€˜(ℝ^β€˜πΌ)) ↦ (βˆšβ€˜(ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ (((π‘“β€˜π‘₯) βˆ’ (π‘”β€˜π‘₯))↑2))))) Fn ((Baseβ€˜(ℝ^β€˜πΌ)) Γ— (Baseβ€˜(ℝ^β€˜πΌ)))))
143, 13mpbiri 257 . . 3 (𝐼 ∈ 𝑉 β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
15 fnov 7539 . . 3 (𝐷 Fn (𝑋 Γ— 𝑋) ↔ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔)))
1614, 15sylib 217 . 2 (𝐼 ∈ 𝑉 β†’ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔)))
179, 4rrxmval 24921 . . 3 ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) β†’ (𝑓𝐷𝑔) = (βˆšβ€˜Ξ£π‘˜ ∈ ((𝑓 supp 0) βˆͺ (𝑔 supp 0))(((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2)))
1817mpoeq3dva 7485 . 2 (𝐼 ∈ 𝑉 β†’ (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔)) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ ((𝑓 supp 0) βˆͺ (𝑔 supp 0))(((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2))))
1916, 18eqtrd 2772 1 (𝐼 ∈ 𝑉 β†’ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ ((𝑓 supp 0) βˆͺ (𝑔 supp 0))(((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432   βˆͺ cun 3946   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410   supp csupp 8145   ↑m cmap 8819   finSupp cfsupp 9360  β„cr 11108  0cc0 11109   βˆ’ cmin 11443  2c2 12266  β†‘cexp 14026  βˆšcsqrt 15179  Ξ£csu 15631  Basecbs 17143  distcds 17205   Ξ£g cgsu 17385  β„fldcrefld 21156  β„^crrx 24899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-grp 18821  df-minusg 18822  df-sbg 18823  df-subg 19002  df-ghm 19089  df-cntz 19180  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-oppr 20149  df-dvdsr 20170  df-unit 20171  df-invr 20201  df-dvr 20214  df-rnghom 20250  df-subrg 20316  df-drng 20358  df-field 20359  df-staf 20452  df-srng 20453  df-lmod 20472  df-lss 20542  df-sra 20784  df-rgmod 20785  df-cnfld 20944  df-refld 21157  df-dsmm 21286  df-frlm 21301  df-nm 24090  df-tng 24092  df-tcph 24685  df-rrx 24901
This theorem is referenced by:  rrxmet  24924
  Copyright terms: Public domain W3C validator