MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmfval Structured version   Visualization version   GIF version

Theorem rrxmfval 25440
Description: The value of the Euclidean metric. Compare with rrnval 37834. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmfval (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑓,,𝑘,𝑔,𝐼   𝑓,𝑉,𝑔,,𝑘   𝑓,𝑋,𝑔,𝑘
Allowed substitution hints:   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))
2 fvex 6919 . . . . 5 (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) ∈ V
31, 2fnmpoi 8095 . . . 4 (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) Fn ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼)))
4 rrxmval.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
5 eqid 2737 . . . . . . 7 (ℝ^‘𝐼) = (ℝ^‘𝐼)
6 eqid 2737 . . . . . . 7 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
75, 6rrxds 25427 . . . . . 6 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
84, 7eqtr4id 2796 . . . . 5 (𝐼𝑉𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
9 rrxmval.1 . . . . . . 7 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
105, 6rrxbase 25422 . . . . . . 7 (𝐼𝑉 → (Base‘(ℝ^‘𝐼)) = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
119, 10eqtr4id 2796 . . . . . 6 (𝐼𝑉𝑋 = (Base‘(ℝ^‘𝐼)))
1211sqxpeqd 5717 . . . . 5 (𝐼𝑉 → (𝑋 × 𝑋) = ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼))))
138, 12fneq12d 6663 . . . 4 (𝐼𝑉 → (𝐷 Fn (𝑋 × 𝑋) ↔ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) Fn ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼)))))
143, 13mpbiri 258 . . 3 (𝐼𝑉𝐷 Fn (𝑋 × 𝑋))
15 fnov 7564 . . 3 (𝐷 Fn (𝑋 × 𝑋) ↔ 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (𝑓𝐷𝑔)))
1614, 15sylib 218 . 2 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (𝑓𝐷𝑔)))
179, 4rrxmval 25439 . . 3 ((𝐼𝑉𝑓𝑋𝑔𝑋) → (𝑓𝐷𝑔) = (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓𝑘) − (𝑔𝑘))↑2)))
1817mpoeq3dva 7510 . 2 (𝐼𝑉 → (𝑓𝑋, 𝑔𝑋 ↦ (𝑓𝐷𝑔)) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓𝑘) − (𝑔𝑘))↑2))))
1916, 18eqtrd 2777 1 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3436  cun 3949   class class class wbr 5143  cmpt 5225   × cxp 5683   Fn wfn 6556  cfv 6561  (class class class)co 7431  cmpo 7433   supp csupp 8185  m cmap 8866   finSupp cfsupp 9401  cr 11154  0cc0 11155  cmin 11492  2c2 12321  cexp 14102  csqrt 15272  Σcsu 15722  Basecbs 17247  distcds 17306   Σg cgsu 17485  fldcrefld 21622  ℝ^crrx 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-refld 21623  df-dsmm 21752  df-frlm 21767  df-nm 24595  df-tng 24597  df-tcph 25203  df-rrx 25419
This theorem is referenced by:  rrxmet  25442
  Copyright terms: Public domain W3C validator