![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxmfval | Structured version Visualization version GIF version |
Description: The value of the Euclidean metric. Compare with rrnval 37341. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | β’ π = {β β (β βm πΌ) β£ β finSupp 0} |
rrxmval.d | β’ π· = (distβ(β^βπΌ)) |
Ref | Expression |
---|---|
rrxmfval | β’ (πΌ β π β π· = (π β π, π β π β¦ (ββΞ£π β ((π supp 0) βͺ (π supp 0))(((πβπ) β (πβπ))β2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . 5 β’ (π β (Baseβ(β^βπΌ)), π β (Baseβ(β^βπΌ)) β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2))))) = (π β (Baseβ(β^βπΌ)), π β (Baseβ(β^βπΌ)) β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2))))) | |
2 | fvex 6915 | . . . . 5 β’ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2)))) β V | |
3 | 1, 2 | fnmpoi 8082 | . . . 4 β’ (π β (Baseβ(β^βπΌ)), π β (Baseβ(β^βπΌ)) β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2))))) Fn ((Baseβ(β^βπΌ)) Γ (Baseβ(β^βπΌ))) |
4 | rrxmval.d | . . . . . 6 β’ π· = (distβ(β^βπΌ)) | |
5 | eqid 2728 | . . . . . . 7 β’ (β^βπΌ) = (β^βπΌ) | |
6 | eqid 2728 | . . . . . . 7 β’ (Baseβ(β^βπΌ)) = (Baseβ(β^βπΌ)) | |
7 | 5, 6 | rrxds 25349 | . . . . . 6 β’ (πΌ β π β (π β (Baseβ(β^βπΌ)), π β (Baseβ(β^βπΌ)) β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2))))) = (distβ(β^βπΌ))) |
8 | 4, 7 | eqtr4id 2787 | . . . . 5 β’ (πΌ β π β π· = (π β (Baseβ(β^βπΌ)), π β (Baseβ(β^βπΌ)) β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2)))))) |
9 | rrxmval.1 | . . . . . . 7 β’ π = {β β (β βm πΌ) β£ β finSupp 0} | |
10 | 5, 6 | rrxbase 25344 | . . . . . . 7 β’ (πΌ β π β (Baseβ(β^βπΌ)) = {β β (β βm πΌ) β£ β finSupp 0}) |
11 | 9, 10 | eqtr4id 2787 | . . . . . 6 β’ (πΌ β π β π = (Baseβ(β^βπΌ))) |
12 | 11 | sqxpeqd 5714 | . . . . 5 β’ (πΌ β π β (π Γ π) = ((Baseβ(β^βπΌ)) Γ (Baseβ(β^βπΌ)))) |
13 | 8, 12 | fneq12d 6654 | . . . 4 β’ (πΌ β π β (π· Fn (π Γ π) β (π β (Baseβ(β^βπΌ)), π β (Baseβ(β^βπΌ)) β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2))))) Fn ((Baseβ(β^βπΌ)) Γ (Baseβ(β^βπΌ))))) |
14 | 3, 13 | mpbiri 257 | . . 3 β’ (πΌ β π β π· Fn (π Γ π)) |
15 | fnov 7559 | . . 3 β’ (π· Fn (π Γ π) β π· = (π β π, π β π β¦ (ππ·π))) | |
16 | 14, 15 | sylib 217 | . 2 β’ (πΌ β π β π· = (π β π, π β π β¦ (ππ·π))) |
17 | 9, 4 | rrxmval 25361 | . . 3 β’ ((πΌ β π β§ π β π β§ π β π) β (ππ·π) = (ββΞ£π β ((π supp 0) βͺ (π supp 0))(((πβπ) β (πβπ))β2))) |
18 | 17 | mpoeq3dva 7504 | . 2 β’ (πΌ β π β (π β π, π β π β¦ (ππ·π)) = (π β π, π β π β¦ (ββΞ£π β ((π supp 0) βͺ (π supp 0))(((πβπ) β (πβπ))β2)))) |
19 | 16, 18 | eqtrd 2768 | 1 β’ (πΌ β π β π· = (π β π, π β π β¦ (ββΞ£π β ((π supp 0) βͺ (π supp 0))(((πβπ) β (πβπ))β2)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3430 βͺ cun 3947 class class class wbr 5152 β¦ cmpt 5235 Γ cxp 5680 Fn wfn 6548 βcfv 6553 (class class class)co 7426 β cmpo 7428 supp csupp 8173 βm cmap 8853 finSupp cfsupp 9395 βcr 11147 0cc0 11148 β cmin 11484 2c2 12307 βcexp 14068 βcsqrt 15222 Ξ£csu 15674 Basecbs 17189 distcds 17251 Ξ£g cgsu 17431 βfldcrefld 21550 β^crrx 25339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-addf 11227 ax-mulf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-sup 9475 df-oi 9543 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-rp 13017 df-fz 13527 df-fzo 13670 df-seq 14009 df-exp 14069 df-hash 14332 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-clim 15474 df-sum 15675 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-starv 17257 df-sca 17258 df-vsca 17259 df-ip 17260 df-tset 17261 df-ple 17262 df-ds 17264 df-unif 17265 df-hom 17266 df-cco 17267 df-0g 17432 df-gsum 17433 df-prds 17438 df-pws 17440 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-mhm 18749 df-grp 18907 df-minusg 18908 df-sbg 18909 df-subg 19092 df-ghm 19182 df-cntz 19282 df-cmn 19751 df-abl 19752 df-mgp 20089 df-rng 20107 df-ur 20136 df-ring 20189 df-cring 20190 df-oppr 20287 df-dvdsr 20310 df-unit 20311 df-invr 20341 df-dvr 20354 df-rhm 20425 df-subrng 20497 df-subrg 20522 df-drng 20640 df-field 20641 df-staf 20739 df-srng 20740 df-lmod 20759 df-lss 20830 df-sra 21072 df-rgmod 21073 df-cnfld 21294 df-refld 21551 df-dsmm 21680 df-frlm 21695 df-nm 24519 df-tng 24521 df-tcph 25125 df-rrx 25341 |
This theorem is referenced by: rrxmet 25364 |
Copyright terms: Public domain | W3C validator |