| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxmfval | Structured version Visualization version GIF version | ||
| Description: The value of the Euclidean metric. Compare with rrnval 37828. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
| rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
| Ref | Expression |
|---|---|
| rrxmfval | ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) | |
| 2 | fvex 6874 | . . . . 5 ⊢ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) ∈ V | |
| 3 | 1, 2 | fnmpoi 8052 | . . . 4 ⊢ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) Fn ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼))) |
| 4 | rrxmval.d | . . . . . 6 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
| 5 | eqid 2730 | . . . . . . 7 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
| 7 | 5, 6 | rrxds 25300 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘(ℝ^‘𝐼))) |
| 8 | 4, 7 | eqtr4id 2784 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 9 | rrxmval.1 | . . . . . . 7 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 10 | 5, 6 | rrxbase 25295 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘(ℝ^‘𝐼)) = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 11 | 9, 10 | eqtr4id 2784 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑋 = (Base‘(ℝ^‘𝐼))) |
| 12 | 11 | sqxpeqd 5673 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑋 × 𝑋) = ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼)))) |
| 13 | 8, 12 | fneq12d 6616 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐷 Fn (𝑋 × 𝑋) ↔ (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) Fn ((Base‘(ℝ^‘𝐼)) × (Base‘(ℝ^‘𝐼))))) |
| 14 | 3, 13 | mpbiri 258 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐷 Fn (𝑋 × 𝑋)) |
| 15 | fnov 7523 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) ↔ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔))) | |
| 16 | 14, 15 | sylib 218 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔))) |
| 17 | 9, 4 | rrxmval 25312 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓𝐷𝑔) = (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
| 18 | 17 | mpoeq3dva 7469 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (𝑓𝐷𝑔)) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
| 19 | 16, 18 | eqtrd 2765 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ∪ cun 3915 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 supp csupp 8142 ↑m cmap 8802 finSupp cfsupp 9319 ℝcr 11074 0cc0 11075 − cmin 11412 2c2 12248 ↑cexp 14033 √csqrt 15206 Σcsu 15659 Basecbs 17186 distcds 17236 Σg cgsu 17410 ℝfldcrefld 21520 ℝ^crrx 25290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-staf 20755 df-srng 20756 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-refld 21521 df-dsmm 21648 df-frlm 21663 df-nm 24477 df-tng 24479 df-tcph 25076 df-rrx 25292 |
| This theorem is referenced by: rrxmet 25315 |
| Copyright terms: Public domain | W3C validator |