Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfn Structured version   Visualization version   GIF version

Theorem sseqfn 33030
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqfn (𝜑 → (𝑀seqstr𝐹) Fn ℕ0)

Proof of Theorem sseqfn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
2 wrdfn 14423 . . . 4 (𝑀 ∈ Word 𝑆𝑀 Fn (0..^(♯‘𝑀)))
31, 2syl 17 . . 3 (𝜑𝑀 Fn (0..^(♯‘𝑀)))
4 fvex 6860 . . . . . 6 (𝑥‘((♯‘𝑥) − 1)) ∈ V
5 df-lsw 14458 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
64, 5fnmpti 6649 . . . . 5 lastS Fn V
76a1i 11 . . . 4 (𝜑 → lastS Fn V)
8 lencl 14428 . . . . . 6 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
98nn0zd 12532 . . . . 5 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ)
10 seqfn 13925 . . . . 5 ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)))
111, 9, 103syl 18 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)))
12 ssv 3973 . . . . 5 ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V
1312a1i 11 . . . 4 (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V)
14 fnco 6623 . . . 4 ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)))
157, 11, 13, 14syl3anc 1372 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)))
16 fzouzdisj 13615 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
1716a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
183, 15, 17fnund 6620 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
19 sseqval.1 . . . 4 (𝜑𝑆 ∈ V)
20 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
21 sseqval.4 . . . 4 (𝜑𝐹:𝑊𝑆)
2219, 1, 20, 21sseqval 33028 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
23 nn0uz 12812 . . . 4 0 = (ℤ‘0)
24 elnn0uz 12815 . . . . . 6 ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ‘0))
25 fzouzsplit 13614 . . . . . 6 ((♯‘𝑀) ∈ (ℤ‘0) → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
2624, 25sylbi 216 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
271, 8, 263syl 18 . . . 4 (𝜑 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
2823, 27eqtrid 2789 . . 3 (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
2922, 28fneq12d 6602 . 2 (𝜑 → ((𝑀seqstr𝐹) Fn ℕ0 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))))
3018, 29mpbird 257 1 (𝜑 → (𝑀seqstr𝐹) Fn ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3448  cun 3913  cin 3914  wss 3915  c0 4287  {csn 4591   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  ccom 5642   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  cmpo 7364  0cc0 11058  1c1 11059  cmin 11392  0cn0 12420  cz 12506  cuz 12770  ..^cfzo 13574  seqcseq 13913  chash 14237  Word cword 14409  lastSclsw 14457   ++ cconcat 14465  ⟨“cs1 14490  seqstrcsseq 33023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-seq 13914  df-hash 14238  df-word 14410  df-lsw 14458  df-s1 14491  df-sseq 33024
This theorem is referenced by:  sseqfres  33033
  Copyright terms: Public domain W3C validator