| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfn | Structured version Visualization version GIF version | ||
| Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
| Ref | Expression |
|---|---|
| sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
| sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
| sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
| sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
| Ref | Expression |
|---|---|
| sseqfn | ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
| 2 | wrdfn 14500 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
| 4 | fvex 6874 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
| 5 | df-lsw 14535 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
| 6 | 4, 5 | fnmpti 6664 | . . . . 5 ⊢ lastS Fn V |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
| 8 | lencl 14505 | . . . . . 6 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
| 9 | 8 | nn0zd 12562 | . . . . 5 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ) |
| 10 | seqfn 13985 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) | |
| 11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) |
| 12 | ssv 3974 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) |
| 14 | fnco 6639 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
| 15 | 7, 11, 13, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) |
| 16 | fzouzdisj 13663 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
| 18 | 3, 15, 17 | fnund 6636 | . 2 ⊢ (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 19 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
| 20 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
| 21 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
| 22 | 19, 1, 20, 21 | sseqval 34386 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))) |
| 23 | nn0uz 12842 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
| 24 | elnn0uz 12845 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ≥‘0)) | |
| 25 | fzouzsplit 13662 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ (ℤ≥‘0) → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) | |
| 26 | 24, 25 | sylbi 217 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ0 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 27 | 1, 8, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 28 | 23, 27 | eqtrid 2777 | . . 3 ⊢ (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 29 | 22, 28 | fneq12d 6616 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹) Fn ℕ0 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀))))) |
| 30 | 18, 29 | mpbird 257 | 1 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 × cxp 5639 ◡ccnv 5640 ran crn 5642 “ cima 5644 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 1c1 11076 − cmin 11412 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ..^cfzo 13622 seqcseq 13973 ♯chash 14302 Word cword 14485 lastSclsw 14534 ++ cconcat 14542 〈“cs1 14567 seqstrcsseq 34381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-word 14486 df-lsw 14535 df-s1 14568 df-sseq 34382 |
| This theorem is referenced by: sseqfres 34391 |
| Copyright terms: Public domain | W3C validator |