![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfn | Structured version Visualization version GIF version |
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
Ref | Expression |
---|---|
sseqfn | ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
2 | wrdfn 14478 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
4 | fvex 6905 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
5 | df-lsw 14513 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
6 | 4, 5 | fnmpti 6694 | . . . . 5 ⊢ lastS Fn V |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
8 | lencl 14483 | . . . . . 6 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
9 | 8 | nn0zd 12584 | . . . . 5 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ) |
10 | seqfn 13978 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀))) | |
11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀))) |
12 | ssv 4007 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V) |
14 | fnco 6668 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
15 | 7, 11, 13, 14 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀))) |
16 | fzouzdisj 13668 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
18 | 3, 15, 17 | fnund 6665 | . 2 ⊢ (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
19 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
20 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
21 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
22 | 19, 1, 20, 21 | sseqval 33387 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))) |
23 | nn0uz 12864 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
24 | elnn0uz 12867 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ≥‘0)) | |
25 | fzouzsplit 13667 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ (ℤ≥‘0) → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) | |
26 | 24, 25 | sylbi 216 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ0 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
27 | 1, 8, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
28 | 23, 27 | eqtrid 2785 | . . 3 ⊢ (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
29 | 22, 28 | fneq12d 6645 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹) Fn ℕ0 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀))))) |
30 | 18, 29 | mpbird 257 | 1 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 {csn 4629 × cxp 5675 ◡ccnv 5676 ran crn 5678 “ cima 5680 ∘ ccom 5681 Fn wfn 6539 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 0cc0 11110 1c1 11111 − cmin 11444 ℕ0cn0 12472 ℤcz 12558 ℤ≥cuz 12822 ..^cfzo 13627 seqcseq 13966 ♯chash 14290 Word cword 14464 lastSclsw 14512 ++ cconcat 14520 ⟨“cs1 14545 seqstrcsseq 33382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-word 14465 df-lsw 14513 df-s1 14546 df-sseq 33383 |
This theorem is referenced by: sseqfres 33392 |
Copyright terms: Public domain | W3C validator |