| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfn | Structured version Visualization version GIF version | ||
| Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
| Ref | Expression |
|---|---|
| sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
| sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
| sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
| sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
| Ref | Expression |
|---|---|
| sseqfn | ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
| 2 | wrdfn 14546 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
| 4 | fvex 6889 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
| 5 | df-lsw 14581 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
| 6 | 4, 5 | fnmpti 6681 | . . . . 5 ⊢ lastS Fn V |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
| 8 | lencl 14551 | . . . . . 6 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
| 9 | 8 | nn0zd 12614 | . . . . 5 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ) |
| 10 | seqfn 14031 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) | |
| 11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) |
| 12 | ssv 3983 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) |
| 14 | fnco 6656 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
| 15 | 7, 11, 13, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) |
| 16 | fzouzdisj 13712 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
| 18 | 3, 15, 17 | fnund 6653 | . 2 ⊢ (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 19 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
| 20 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
| 21 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
| 22 | 19, 1, 20, 21 | sseqval 34420 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))) |
| 23 | nn0uz 12894 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
| 24 | elnn0uz 12897 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ≥‘0)) | |
| 25 | fzouzsplit 13711 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ (ℤ≥‘0) → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) | |
| 26 | 24, 25 | sylbi 217 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ0 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 27 | 1, 8, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 28 | 23, 27 | eqtrid 2782 | . . 3 ⊢ (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
| 29 | 22, 28 | fneq12d 6633 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹) Fn ℕ0 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀))))) |
| 30 | 18, 29 | mpbird 257 | 1 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 × cxp 5652 ◡ccnv 5653 ran crn 5655 “ cima 5657 ∘ ccom 5658 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 0cc0 11129 1c1 11130 − cmin 11466 ℕ0cn0 12501 ℤcz 12588 ℤ≥cuz 12852 ..^cfzo 13671 seqcseq 14019 ♯chash 14348 Word cword 14531 lastSclsw 14580 ++ cconcat 14588 〈“cs1 14613 seqstrcsseq 34415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-word 14532 df-lsw 14581 df-s1 14614 df-sseq 34416 |
| This theorem is referenced by: sseqfres 34425 |
| Copyright terms: Public domain | W3C validator |