MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscres Structured version   Visualization version   GIF version

Theorem sscres 17785
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscres ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)

Proof of Theorem sscres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4200 . . 3 (𝑆𝑇) ⊆ 𝑆
2 simpl 482 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥 ∈ (𝑆𝑇))
32elin2d 4168 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥𝑇)
4 simpr 484 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦 ∈ (𝑆𝑇))
54elin2d 4168 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦𝑇)
63, 5ovresd 7556 . . . . 5 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦))
7 eqimss 4005 . . . . 5 ((𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
86, 7syl 17 . . . 4 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
98rgen2 3177 . . 3 𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)
101, 9pm3.2i 470 . 2 ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
11 simpl 482 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝐻 Fn (𝑆 × 𝑆))
12 inss1 4200 . . . . 5 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)
13 fnssres 6641 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
1411, 12, 13sylancl 586 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
15 resres 5963 . . . . . 6 ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
16 fnresdm 6637 . . . . . . . 8 (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1716adantr 480 . . . . . . 7 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1817reseq1d 5949 . . . . . 6 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ (𝑇 × 𝑇)))
1915, 18eqtr3id 2778 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) = (𝐻 ↾ (𝑇 × 𝑇)))
20 inxp 5795 . . . . . 6 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇))
2120a1i 11 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇)))
2219, 21fneq12d 6613 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ↔ (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇))))
2314, 22mpbid 232 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇)))
24 simpr 484 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝑆𝑉)
2523, 11, 24isssc 17782 . 2 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻 ↔ ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))))
2610, 25mpbiri 258 1 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3913  wss 3914   class class class wbr 5107   × cxp 5636  cres 5640   Fn wfn 6506  (class class class)co 7387  cat cssc 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-ixp 8871  df-ssc 17772
This theorem is referenced by:  sscid  17786  fullsubc  17812
  Copyright terms: Public domain W3C validator