Step | Hyp | Ref
| Expression |
1 | | inss1 4159 |
. . 3
⊢ (𝑆 ∩ 𝑇) ⊆ 𝑆 |
2 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑥 ∈ (𝑆 ∩ 𝑇)) |
3 | 2 | elin2d 4129 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑥 ∈ 𝑇) |
4 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑦 ∈ (𝑆 ∩ 𝑇)) |
5 | 4 | elin2d 4129 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑦 ∈ 𝑇) |
6 | 3, 5 | ovresd 7417 |
. . . . 5
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦)) |
7 | | eqimss 3973 |
. . . . 5
⊢ ((𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)) |
9 | 8 | rgen2 3126 |
. . 3
⊢
∀𝑥 ∈
(𝑆 ∩ 𝑇)∀𝑦 ∈ (𝑆 ∩ 𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦) |
10 | 1, 9 | pm3.2i 470 |
. 2
⊢ ((𝑆 ∩ 𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆 ∩ 𝑇)∀𝑦 ∈ (𝑆 ∩ 𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)) |
11 | | simpl 482 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → 𝐻 Fn (𝑆 × 𝑆)) |
12 | | inss1 4159 |
. . . . 5
⊢ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆) |
13 | | fnssres 6539 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) |
14 | 11, 12, 13 | sylancl 585 |
. . . 4
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) |
15 | | resres 5893 |
. . . . . 6
⊢ ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) |
16 | | fnresdm 6535 |
. . . . . . . 8
⊢ (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻) |
17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻) |
18 | 17 | reseq1d 5879 |
. . . . . 6
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ (𝑇 × 𝑇))) |
19 | 15, 18 | eqtr3id 2793 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) = (𝐻 ↾ (𝑇 × 𝑇))) |
20 | | inxp 5730 |
. . . . . 6
⊢ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇)) |
21 | 20 | a1i 11 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇))) |
22 | 19, 21 | fneq12d 6512 |
. . . 4
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ↔ (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇)))) |
23 | 14, 22 | mpbid 231 |
. . 3
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇))) |
24 | | simpr 484 |
. . 3
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → 𝑆 ∈ 𝑉) |
25 | 23, 11, 24 | isssc 17449 |
. 2
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻 ↔ ((𝑆 ∩ 𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆 ∩ 𝑇)∀𝑦 ∈ (𝑆 ∩ 𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)))) |
26 | 10, 25 | mpbiri 257 |
1
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻) |