| Step | Hyp | Ref
| Expression |
| 1 | | inss1 4217 |
. . 3
⊢ (𝑆 ∩ 𝑇) ⊆ 𝑆 |
| 2 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑥 ∈ (𝑆 ∩ 𝑇)) |
| 3 | 2 | elin2d 4185 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑥 ∈ 𝑇) |
| 4 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑦 ∈ (𝑆 ∩ 𝑇)) |
| 5 | 4 | elin2d 4185 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → 𝑦 ∈ 𝑇) |
| 6 | 3, 5 | ovresd 7579 |
. . . . 5
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦)) |
| 7 | | eqimss 4022 |
. . . . 5
⊢ ((𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝑥 ∈ (𝑆 ∩ 𝑇) ∧ 𝑦 ∈ (𝑆 ∩ 𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)) |
| 9 | 8 | rgen2 3185 |
. . 3
⊢
∀𝑥 ∈
(𝑆 ∩ 𝑇)∀𝑦 ∈ (𝑆 ∩ 𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦) |
| 10 | 1, 9 | pm3.2i 470 |
. 2
⊢ ((𝑆 ∩ 𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆 ∩ 𝑇)∀𝑦 ∈ (𝑆 ∩ 𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)) |
| 11 | | simpl 482 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → 𝐻 Fn (𝑆 × 𝑆)) |
| 12 | | inss1 4217 |
. . . . 5
⊢ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆) |
| 13 | | fnssres 6666 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) |
| 14 | 11, 12, 13 | sylancl 586 |
. . . 4
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) |
| 15 | | resres 5984 |
. . . . . 6
⊢ ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) |
| 16 | | fnresdm 6662 |
. . . . . . . 8
⊢ (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻) |
| 18 | 17 | reseq1d 5970 |
. . . . . 6
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ (𝑇 × 𝑇))) |
| 19 | 15, 18 | eqtr3id 2785 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) = (𝐻 ↾ (𝑇 × 𝑇))) |
| 20 | | inxp 5816 |
. . . . . 6
⊢ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇)) |
| 21 | 20 | a1i 11 |
. . . . 5
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇))) |
| 22 | 19, 21 | fneq12d 6638 |
. . . 4
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ↔ (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇)))) |
| 23 | 14, 22 | mpbid 232 |
. . 3
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆 ∩ 𝑇) × (𝑆 ∩ 𝑇))) |
| 24 | | simpr 484 |
. . 3
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → 𝑆 ∈ 𝑉) |
| 25 | 23, 11, 24 | isssc 17838 |
. 2
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → ((𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻 ↔ ((𝑆 ∩ 𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆 ∩ 𝑇)∀𝑦 ∈ (𝑆 ∩ 𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)))) |
| 26 | 10, 25 | mpbiri 258 |
1
⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻) |