MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscres Structured version   Visualization version   GIF version

Theorem sscres 17706
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscres ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)

Proof of Theorem sscres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . 3 (𝑆𝑇) ⊆ 𝑆
2 simpl 483 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥 ∈ (𝑆𝑇))
32elin2d 4159 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥𝑇)
4 simpr 485 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦 ∈ (𝑆𝑇))
54elin2d 4159 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦𝑇)
63, 5ovresd 7521 . . . . 5 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦))
7 eqimss 4000 . . . . 5 ((𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
86, 7syl 17 . . . 4 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
98rgen2 3194 . . 3 𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)
101, 9pm3.2i 471 . 2 ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
11 simpl 483 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝐻 Fn (𝑆 × 𝑆))
12 inss1 4188 . . . . 5 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)
13 fnssres 6624 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
1411, 12, 13sylancl 586 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
15 resres 5950 . . . . . 6 ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
16 fnresdm 6620 . . . . . . . 8 (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1716adantr 481 . . . . . . 7 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1817reseq1d 5936 . . . . . 6 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ (𝑇 × 𝑇)))
1915, 18eqtr3id 2790 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) = (𝐻 ↾ (𝑇 × 𝑇)))
20 inxp 5788 . . . . . 6 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇))
2120a1i 11 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇)))
2219, 21fneq12d 6597 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ↔ (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇))))
2314, 22mpbid 231 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇)))
24 simpr 485 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝑆𝑉)
2523, 11, 24isssc 17703 . 2 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻 ↔ ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))))
2610, 25mpbiri 257 1 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  cin 3909  wss 3910   class class class wbr 5105   × cxp 5631  cres 5635   Fn wfn 6491  (class class class)co 7357  cat cssc 17690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-ixp 8836  df-ssc 17693
This theorem is referenced by:  sscid  17707  fullsubc  17736
  Copyright terms: Public domain W3C validator