MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscres Structured version   Visualization version   GIF version

Theorem sscres 16834
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscres ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)

Proof of Theorem sscres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4056 . . 3 (𝑆𝑇) ⊆ 𝑆
2 inss2 4057 . . . . . . 7 (𝑆𝑇) ⊆ 𝑇
3 simpl 476 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥 ∈ (𝑆𝑇))
42, 3sseldi 3824 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥𝑇)
5 simpr 479 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦 ∈ (𝑆𝑇))
62, 5sseldi 3824 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦𝑇)
74, 6ovresd 7060 . . . . 5 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦))
8 eqimss 3881 . . . . 5 ((𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
97, 8syl 17 . . . 4 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
109rgen2a 3185 . . 3 𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)
111, 10pm3.2i 464 . 2 ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
12 simpl 476 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝐻 Fn (𝑆 × 𝑆))
13 inss1 4056 . . . . 5 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)
14 fnssres 6236 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
1512, 13, 14sylancl 582 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
16 resres 5645 . . . . . 6 ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
17 fnresdm 6232 . . . . . . . 8 (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1817adantr 474 . . . . . . 7 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1918reseq1d 5627 . . . . . 6 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ (𝑇 × 𝑇)))
2016, 19syl5eqr 2874 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) = (𝐻 ↾ (𝑇 × 𝑇)))
21 inxp 5486 . . . . . 6 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇))
2221a1i 11 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇)))
2320, 22fneq12d 6215 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ↔ (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇))))
2415, 23mpbid 224 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇)))
25 simpr 479 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝑆𝑉)
2624, 12, 25isssc 16831 . 2 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻 ↔ ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))))
2711, 26mpbiri 250 1 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wral 3116  cin 3796  wss 3797   class class class wbr 4872   × cxp 5339  cres 5343   Fn wfn 6117  (class class class)co 6904  cat cssc 16818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-ixp 8175  df-ssc 16821
This theorem is referenced by:  sscid  16835  fullsubc  16861
  Copyright terms: Public domain W3C validator