Step | Hyp | Ref
| Expression |
1 | | funcres.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
2 | | funcres.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
3 | 1, 2 | resfval 17607 |
. . 3
⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
4 | 3 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
5 | | fvex 6787 |
. . . . . . 7
⊢
(1st ‘𝐹) ∈ V |
6 | 5 | resex 5939 |
. . . . . 6
⊢
((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
7 | | dmexg 7750 |
. . . . . . 7
⊢ (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V) |
8 | | mptexg 7097 |
. . . . . . 7
⊢ (dom
𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
9 | 2, 7, 8 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
10 | | op2ndg 7844 |
. . . . . 6
⊢
((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
11 | 6, 9, 10 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
12 | 4, 11 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
13 | 12 | opeq2d 4811 |
. . 3
⊢ (𝜑 → 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉 = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
14 | 3, 13 | eqtr4d 2781 |
. 2
⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉) |
15 | | eqid 2738 |
. . . 4
⊢
(Base‘(𝐶
↾cat 𝐻)) =
(Base‘(𝐶
↾cat 𝐻)) |
16 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
17 | | eqid 2738 |
. . . 4
⊢ (Hom
‘(𝐶
↾cat 𝐻)) =
(Hom ‘(𝐶
↾cat 𝐻)) |
18 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
19 | | eqid 2738 |
. . . 4
⊢
(Id‘(𝐶
↾cat 𝐻)) =
(Id‘(𝐶
↾cat 𝐻)) |
20 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) |
21 | | eqid 2738 |
. . . 4
⊢
(comp‘(𝐶
↾cat 𝐻)) =
(comp‘(𝐶
↾cat 𝐻)) |
22 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
23 | | eqid 2738 |
. . . . 5
⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) |
24 | 23, 2 | subccat 17563 |
. . . 4
⊢ (𝜑 → (𝐶 ↾cat 𝐻) ∈ Cat) |
25 | | funcrcl 17578 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
26 | 1, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
27 | 26 | simprd 496 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
29 | | relfunc 17577 |
. . . . . . . 8
⊢ Rel
(𝐶 Func 𝐷) |
30 | | 1st2ndbr 7883 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
31 | 29, 1, 30 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
32 | 28, 16, 31 | funcf1 17581 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
33 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝜑 → dom dom 𝐻 = dom dom 𝐻) |
34 | 2, 33 | subcfn 17556 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
35 | 2, 34, 28 | subcss1 17557 |
. . . . . 6
⊢ (𝜑 → dom dom 𝐻 ⊆ (Base‘𝐶)) |
36 | 32, 35 | fssresd 6641 |
. . . . 5
⊢ (𝜑 → ((1st
‘𝐹) ↾ dom dom
𝐻):dom dom 𝐻⟶(Base‘𝐷)) |
37 | 26 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
38 | 23, 28, 37, 34, 35 | rescbas 17541 |
. . . . . 6
⊢ (𝜑 → dom dom 𝐻 = (Base‘(𝐶 ↾cat 𝐻))) |
39 | 38 | feq2d 6586 |
. . . . 5
⊢ (𝜑 → (((1st
‘𝐹) ↾ dom dom
𝐻):dom dom 𝐻⟶(Base‘𝐷) ↔ ((1st
‘𝐹) ↾ dom dom
𝐻):(Base‘(𝐶 ↾cat 𝐻))⟶(Base‘𝐷))) |
40 | 36, 39 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((1st
‘𝐹) ↾ dom dom
𝐻):(Base‘(𝐶 ↾cat 𝐻))⟶(Base‘𝐷)) |
41 | | fvex 6787 |
. . . . . . 7
⊢
((2nd ‘𝐹)‘𝑧) ∈ V |
42 | 41 | resex 5939 |
. . . . . 6
⊢
(((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)) ∈ V |
43 | | eqid 2738 |
. . . . . 6
⊢ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) |
44 | 42, 43 | fnmpti 6576 |
. . . . 5
⊢ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) Fn dom 𝐻 |
45 | 12 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) = (2nd ‘(𝐹 ↾f
𝐻))) |
46 | | fndm 6536 |
. . . . . . . 8
⊢ (𝐻 Fn (dom dom 𝐻 × dom dom 𝐻) → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻)) |
47 | 34, 46 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻)) |
48 | 38 | sqxpeqd 5621 |
. . . . . . 7
⊢ (𝜑 → (dom dom 𝐻 × dom dom 𝐻) = ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻)))) |
49 | 47, 48 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → dom 𝐻 = ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻)))) |
50 | 45, 49 | fneq12d 6528 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) Fn dom 𝐻 ↔ (2nd ‘(𝐹 ↾f
𝐻)) Fn ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻))))) |
51 | 44, 50 | mpbii 232 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) Fn ((Base‘(𝐶 ↾cat 𝐻)) × (Base‘(𝐶 ↾cat 𝐻)))) |
52 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
53 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
54 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → dom dom 𝐻 ⊆ (Base‘𝐶)) |
55 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
56 | 38 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → dom dom 𝐻 = (Base‘(𝐶 ↾cat 𝐻))) |
57 | 55, 56 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑥 ∈ dom dom 𝐻) |
58 | 54, 57 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑥 ∈ (Base‘𝐶)) |
59 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
60 | 59, 56 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑦 ∈ dom dom 𝐻) |
61 | 54, 60 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝑦 ∈ (Base‘𝐶)) |
62 | 28, 52, 18, 53, 58, 61 | funcf2 17583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
63 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐻 ∈ (Subcat‘𝐶)) |
64 | 34 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
65 | 63, 64, 52, 57, 60 | subcss2 17558 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
66 | 62, 65 | fssresd 6641 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
67 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
68 | 67, 63, 64, 57, 60 | resf2nd 17610 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦) = ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))) |
69 | 68 | feq1d 6585 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ↔ ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)))) |
70 | 66, 69 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
71 | 23, 28, 37, 34, 35 | reschom 17543 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (Hom ‘(𝐶 ↾cat 𝐻))) |
72 | 71 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → 𝐻 = (Hom ‘(𝐶 ↾cat 𝐻))) |
73 | 72 | oveqd 7292 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)) |
74 | 57 | fvresd 6794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
75 | 60 | fvresd 6794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st ‘𝐹)‘𝑦)) |
76 | 74, 75 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)) = (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
77 | 76 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) = ((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦))) |
78 | 73, 77 | feq23d 6595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ↔ (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)⟶((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)))) |
79 | 70, 78 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦):(𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)⟶((((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦))) |
80 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
81 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝐻 ∈ (Subcat‘𝐶)) |
82 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
83 | 38 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ dom dom 𝐻 ↔ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)))) |
84 | 83 | biimpar 478 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝑥 ∈ dom dom 𝐻) |
85 | 80, 81, 82, 84, 84 | resf2nd 17610 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑥) = ((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))) |
86 | | eqid 2738 |
. . . . . . . 8
⊢
(Id‘𝐶) =
(Id‘𝐶) |
87 | 23, 81, 82, 86, 84 | subcid 17562 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘𝐶)‘𝑥) = ((Id‘(𝐶 ↾cat 𝐻))‘𝑥)) |
88 | 87 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘(𝐶 ↾cat 𝐻))‘𝑥) = ((Id‘𝐶)‘𝑥)) |
89 | 85, 88 | fveq12d 6781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑥)‘((Id‘(𝐶 ↾cat 𝐻))‘𝑥)) = (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥))) |
90 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
91 | 38, 35 | eqsstrrd 3960 |
. . . . . . . 8
⊢ (𝜑 → (Base‘(𝐶 ↾cat 𝐻)) ⊆ (Base‘𝐶)) |
92 | 91 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → 𝑥 ∈ (Base‘𝐶)) |
93 | 28, 86, 20, 90, 92 | funcid 17585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) |
94 | 81, 82, 84, 86 | subcidcl 17559 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
95 | 94 | fvresd 6794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) |
96 | 84 | fvresd 6794 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
97 | 96 | fveq2d 6778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((Id‘𝐷)‘(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) |
98 | 93, 95, 97 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → (((𝑥(2nd ‘𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥))) |
99 | 89, 98 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑥)‘((Id‘(𝐶 ↾cat 𝐻))‘𝑥)) = ((Id‘𝐷)‘(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥))) |
100 | 2 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐻 ∈ (Subcat‘𝐶)) |
101 | 34 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
102 | | simp21 1205 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
103 | 38 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → dom dom 𝐻 = (Base‘(𝐶 ↾cat 𝐻))) |
104 | 102, 103 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑥 ∈ dom dom 𝐻) |
105 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐶) =
(comp‘𝐶) |
106 | | simp22 1206 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
107 | 106, 103 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑦 ∈ dom dom 𝐻) |
108 | | simp23 1207 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) |
109 | 108, 103 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑧 ∈ dom dom 𝐻) |
110 | | simp3l 1200 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)) |
111 | 71 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐻 = (Hom ‘(𝐶 ↾cat 𝐻))) |
112 | 111 | oveqd 7292 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦)) |
113 | 110, 112 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
114 | | simp3r 1201 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧)) |
115 | 111 | oveqd 7292 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧)) |
116 | 114, 115 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
117 | 100, 101,
104, 105, 107, 109, 113, 116 | subccocl 17560 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
118 | 117 | fvresd 6794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
119 | 31 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
120 | 35 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → dom dom 𝐻 ⊆ (Base‘𝐶)) |
121 | 120, 104 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
122 | 120, 107 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
123 | 120, 109 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
124 | 100, 101,
52, 104, 107 | subcss2 17558 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦)) |
125 | 124, 113 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
126 | 100, 101,
52, 107, 109 | subcss2 17558 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑦𝐻𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧)) |
127 | 126, 116 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
128 | 28, 52, 105, 22, 119, 121, 122, 123, 125, 127 | funcco 17586 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
129 | 118, 128 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
130 | 1 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
131 | 130, 100,
101, 104, 109 | resf2nd 17610 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑧) = ((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))) |
132 | 23, 28, 37, 34, 35, 105 | rescco 17545 |
. . . . . . . . . 10
⊢ (𝜑 → (comp‘𝐶) = (comp‘(𝐶 ↾cat 𝐻))) |
133 | 132 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (comp‘𝐶) = (comp‘(𝐶 ↾cat 𝐻))) |
134 | 133 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (comp‘(𝐶 ↾cat 𝐻)) = (comp‘𝐶)) |
135 | 134 | oveqd 7292 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧) = (〈𝑥, 𝑦〉(comp‘𝐶)𝑧)) |
136 | 135 | oveqd 7292 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
137 | 131, 136 | fveq12d 6781 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧)𝑓)) = (((𝑥(2nd ‘𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
138 | 104 | fvresd 6794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
139 | 107 | fvresd 6794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st ‘𝐹)‘𝑦)) |
140 | 138, 139 | opeq12d 4812 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → 〈(((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉 = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉) |
141 | 109 | fvresd 6794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st ‘𝐹)‘𝑧)) |
142 | 140, 141 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (〈(((1st
‘𝐹) ↾ dom dom
𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉(comp‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧)) = (〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))) |
143 | 130, 100,
101, 107, 109 | resf2nd 17610 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧) = ((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))) |
144 | 143 | fveq1d 6776 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔) = (((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔)) |
145 | 116 | fvresd 6794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑦(2nd ‘𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd ‘𝐹)𝑧)‘𝑔)) |
146 | 144, 145 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔) = ((𝑦(2nd ‘𝐹)𝑧)‘𝑔)) |
147 | 130, 100,
101, 104, 107 | resf2nd 17610 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦) = ((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))) |
148 | 147 | fveq1d 6776 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓) = (((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓)) |
149 | 113 | fvresd 6794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑥(2nd ‘𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
150 | 148, 149 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓) = ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) |
151 | 142, 146,
150 | oveq123d 7296 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → (((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔)(〈(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉(comp‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
152 | 129, 137,
151 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶 ↾cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶 ↾cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶 ↾cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶 ↾cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾cat 𝐻))𝑧)𝑓)) = (((𝑦(2nd ‘(𝐹 ↾f 𝐻))𝑧)‘𝑔)(〈(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑦)〉(comp‘𝐷)(((1st ‘𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹 ↾f 𝐻))𝑦)‘𝑓))) |
153 | 15, 16, 17, 18, 19, 20, 21, 22, 24, 27, 40, 51, 79, 99, 152 | isfuncd 17580 |
. . 3
⊢ (𝜑 → ((1st
‘𝐹) ↾ dom dom
𝐻)((𝐶 ↾cat 𝐻) Func 𝐷)(2nd ‘(𝐹 ↾f 𝐻))) |
154 | | df-br 5075 |
. . 3
⊢
(((1st ‘𝐹) ↾ dom dom 𝐻)((𝐶 ↾cat 𝐻) Func 𝐷)(2nd ‘(𝐹 ↾f 𝐻)) ↔ 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉 ∈ ((𝐶 ↾cat 𝐻) Func 𝐷)) |
155 | 153, 154 | sylib 217 |
. 2
⊢ (𝜑 → 〈((1st
‘𝐹) ↾ dom dom
𝐻), (2nd
‘(𝐹
↾f 𝐻))〉 ∈ ((𝐶 ↾cat 𝐻) Func 𝐷)) |
156 | 14, 155 | eqeltrd 2839 |
1
⊢ (𝜑 → (𝐹 ↾f 𝐻) ∈ ((𝐶 ↾cat 𝐻) Func 𝐷)) |