MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres Structured version   Visualization version   GIF version

Theorem funcres 17158
Description: A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
funcres.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
funcres.h (𝜑𝐻 ∈ (Subcat‘𝐶))
Assertion
Ref Expression
funcres (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))

Proof of Theorem funcres
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcres.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcres.h . . . 4 (𝜑𝐻 ∈ (Subcat‘𝐶))
31, 2resfval 17154 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6649 . . . . 5 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6658 . . . . . . 7 (1st𝐹) ∈ V
65resex 5866 . . . . . 6 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7594 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
8 mptexg 6961 . . . . . . 7 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . . . . 6 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op2ndg 7684 . . . . . 6 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
116, 9, 10sylancr 590 . . . . 5 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
124, 11eqtrd 2833 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
1312opeq2d 4772 . . 3 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
143, 13eqtr4d 2836 . 2 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩)
15 eqid 2798 . . . 4 (Base‘(𝐶cat 𝐻)) = (Base‘(𝐶cat 𝐻))
16 eqid 2798 . . . 4 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2798 . . . 4 (Hom ‘(𝐶cat 𝐻)) = (Hom ‘(𝐶cat 𝐻))
18 eqid 2798 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
19 eqid 2798 . . . 4 (Id‘(𝐶cat 𝐻)) = (Id‘(𝐶cat 𝐻))
20 eqid 2798 . . . 4 (Id‘𝐷) = (Id‘𝐷)
21 eqid 2798 . . . 4 (comp‘(𝐶cat 𝐻)) = (comp‘(𝐶cat 𝐻))
22 eqid 2798 . . . 4 (comp‘𝐷) = (comp‘𝐷)
23 eqid 2798 . . . . 5 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2423, 2subccat 17110 . . . 4 (𝜑 → (𝐶cat 𝐻) ∈ Cat)
25 funcrcl 17125 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
261, 25syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simprd 499 . . . 4 (𝜑𝐷 ∈ Cat)
28 eqid 2798 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
29 relfunc 17124 . . . . . . . 8 Rel (𝐶 Func 𝐷)
30 1st2ndbr 7723 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3129, 1, 30sylancr 590 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3228, 16, 31funcf1 17128 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 eqidd 2799 . . . . . . . 8 (𝜑 → dom dom 𝐻 = dom dom 𝐻)
342, 33subcfn 17103 . . . . . . 7 (𝜑𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
352, 34, 28subcss1 17104 . . . . . 6 (𝜑 → dom dom 𝐻 ⊆ (Base‘𝐶))
3632, 35fssresd 6519 . . . . 5 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻):dom dom 𝐻⟶(Base‘𝐷))
3726simpld 498 . . . . . . 7 (𝜑𝐶 ∈ Cat)
3823, 28, 37, 34, 35rescbas 17091 . . . . . 6 (𝜑 → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
3938feq2d 6473 . . . . 5 (𝜑 → (((1st𝐹) ↾ dom dom 𝐻):dom dom 𝐻⟶(Base‘𝐷) ↔ ((1st𝐹) ↾ dom dom 𝐻):(Base‘(𝐶cat 𝐻))⟶(Base‘𝐷)))
4036, 39mpbid 235 . . . 4 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻):(Base‘(𝐶cat 𝐻))⟶(Base‘𝐷))
41 fvex 6658 . . . . . . 7 ((2nd𝐹)‘𝑧) ∈ V
4241resex 5866 . . . . . 6 (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) ∈ V
43 eqid 2798 . . . . . 6 (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))
4442, 43fnmpti 6463 . . . . 5 (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) Fn dom 𝐻
4512eqcomd 2804 . . . . . 6 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) = (2nd ‘(𝐹f 𝐻)))
46 fndm 6425 . . . . . . . 8 (𝐻 Fn (dom dom 𝐻 × dom dom 𝐻) → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻))
4734, 46syl 17 . . . . . . 7 (𝜑 → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻))
4838sqxpeqd 5551 . . . . . . 7 (𝜑 → (dom dom 𝐻 × dom dom 𝐻) = ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
4947, 48eqtrd 2833 . . . . . 6 (𝜑 → dom 𝐻 = ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
5045, 49fneq12d 6418 . . . . 5 (𝜑 → ((𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) Fn dom 𝐻 ↔ (2nd ‘(𝐹f 𝐻)) Fn ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻)))))
5144, 50mpbii 236 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) Fn ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
52 eqid 2798 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5331adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
5435adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → dom dom 𝐻 ⊆ (Base‘𝐶))
55 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ (Base‘(𝐶cat 𝐻)))
5638adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
5755, 56eleqtrrd 2893 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ dom dom 𝐻)
5854, 57sseldd 3916 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ (Base‘𝐶))
59 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ (Base‘(𝐶cat 𝐻)))
6059, 56eleqtrrd 2893 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ dom dom 𝐻)
6154, 60sseldd 3916 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ (Base‘𝐶))
6228, 52, 18, 53, 58, 61funcf2 17130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
632adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 ∈ (Subcat‘𝐶))
6434adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
6563, 64, 52, 57, 60subcss2 17105 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
6662, 65fssresd 6519 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
671adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐹 ∈ (𝐶 Func 𝐷))
6867, 63, 64, 57, 60resf2nd 17157 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦) = ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)))
6968feq1d 6472 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ↔ ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
7066, 69mpbird 260 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
7123, 28, 37, 34, 35reschom 17092 . . . . . . . 8 (𝜑𝐻 = (Hom ‘(𝐶cat 𝐻)))
7271adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 = (Hom ‘(𝐶cat 𝐻)))
7372oveqd 7152 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
7457fvresd 6665 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
7560fvresd 6665 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
7674, 75oveq12d 7153 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)) = (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
7776eqcomd 2804 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) = ((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)))
7873, 77feq23d 6482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ↔ (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥(Hom ‘(𝐶cat 𝐻))𝑦)⟶((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦))))
7970, 78mpbid 235 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥(Hom ‘(𝐶cat 𝐻))𝑦)⟶((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)))
801adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐹 ∈ (𝐶 Func 𝐷))
812adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐻 ∈ (Subcat‘𝐶))
8234adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
8338eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑥 ∈ dom dom 𝐻𝑥 ∈ (Base‘(𝐶cat 𝐻))))
8483biimpar 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝑥 ∈ dom dom 𝐻)
8580, 81, 82, 84, 84resf2nd 17157 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑥) = ((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥)))
86 eqid 2798 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
8723, 81, 82, 86, 84subcid 17109 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐶)‘𝑥) = ((Id‘(𝐶cat 𝐻))‘𝑥))
8887eqcomd 2804 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘(𝐶cat 𝐻))‘𝑥) = ((Id‘𝐶)‘𝑥))
8985, 88fveq12d 6652 . . . . 5 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑥)‘((Id‘(𝐶cat 𝐻))‘𝑥)) = (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)))
9031adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9138, 35eqsstrrd 3954 . . . . . . . 8 (𝜑 → (Base‘(𝐶cat 𝐻)) ⊆ (Base‘𝐶))
9291sselda 3915 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝑥 ∈ (Base‘𝐶))
9328, 86, 20, 90, 92funcid 17132 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
9481, 82, 84, 86subcidcl 17106 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
9594fvresd 6665 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)))
9684fvresd 6665 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
9796fveq2d 6649 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
9893, 95, 973eqtr4d 2843 . . . . 5 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)))
9989, 98eqtrd 2833 . . . 4 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑥)‘((Id‘(𝐶cat 𝐻))‘𝑥)) = ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)))
10023ad2ant1 1130 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 ∈ (Subcat‘𝐶))
101343ad2ant1 1130 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
102 simp21 1203 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘(𝐶cat 𝐻)))
103383ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
104102, 103eleqtrrd 2893 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ dom dom 𝐻)
105 eqid 2798 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
106 simp22 1204 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘(𝐶cat 𝐻)))
107106, 103eleqtrrd 2893 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ dom dom 𝐻)
108 simp23 1205 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘(𝐶cat 𝐻)))
109108, 103eleqtrrd 2893 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ dom dom 𝐻)
110 simp3l 1198 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
111713ad2ant1 1130 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 = (Hom ‘(𝐶cat 𝐻)))
112111oveqd 7152 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
113110, 112eleqtrrd 2893 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
114 simp3r 1199 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))
115111oveqd 7152 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))
116114, 115eleqtrrd 2893 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
117100, 101, 104, 105, 107, 109, 113, 116subccocl 17107 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
118117fvresd 6665 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
119313ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
120353ad2ant1 1130 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → dom dom 𝐻 ⊆ (Base‘𝐶))
121120, 104sseldd 3916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘𝐶))
122120, 107sseldd 3916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘𝐶))
123120, 109sseldd 3916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘𝐶))
124100, 101, 52, 104, 107subcss2 17105 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
125124, 113sseldd 3916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
126100, 101, 52, 107, 109subcss2 17105 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦𝐻𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧))
127126, 116sseldd 3916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
12828, 52, 105, 22, 119, 121, 122, 123, 125, 127funcco 17133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
129118, 128eqtrd 2833 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
13013ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷))
131130, 100, 101, 104, 109resf2nd 17157 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑧) = ((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧)))
13223, 28, 37, 34, 35, 105rescco 17094 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶cat 𝐻)))
1331323ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (comp‘𝐶) = (comp‘(𝐶cat 𝐻)))
134133eqcomd 2804 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (comp‘(𝐶cat 𝐻)) = (comp‘𝐶))
135134oveqd 7152 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
136135oveqd 7152 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
137131, 136fveq12d 6652 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓)) = (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
138104fvresd 6665 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
139107fvresd 6665 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
140138, 139opeq12d 4773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩)
141109fvresd 6665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st𝐹)‘𝑧))
142140, 141oveq12d 7153 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧)) = (⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧)))
143130, 100, 101, 107, 109resf2nd 17157 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦(2nd ‘(𝐹f 𝐻))𝑧) = ((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧)))
144143fveq1d 6647 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔) = (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔))
145116fvresd 6665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
146144, 145eqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
147130, 100, 101, 104, 107resf2nd 17157 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦) = ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)))
148147fveq1d 6647 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓) = (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓))
149113fvresd 6665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
150148, 149eqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
151142, 146, 150oveq123d 7156 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔)(⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
152129, 137, 1513eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓)) = (((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔)(⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓)))
15315, 16, 17, 18, 19, 20, 21, 22, 24, 27, 40, 51, 79, 99, 152isfuncd 17127 . . 3 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻)((𝐶cat 𝐻) Func 𝐷)(2nd ‘(𝐹f 𝐻)))
154 df-br 5031 . . 3 (((1st𝐹) ↾ dom dom 𝐻)((𝐶cat 𝐻) Func 𝐷)(2nd ‘(𝐹f 𝐻)) ↔ ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ ∈ ((𝐶cat 𝐻) Func 𝐷))
155153, 154sylib 221 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ ∈ ((𝐶cat 𝐻) Func 𝐷))
15614, 155eqeltrd 2890 1 (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  cop 4531   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  cres 5521  Rel wrel 5524   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928  cat cresc 17070  Subcatcsubc 17071   Func cfunc 17116  f cresf 17119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-homf 16933  df-ssc 17072  df-resc 17073  df-subc 17074  df-func 17120  df-resf 17123
This theorem is referenced by:  funcrngcsetc  44620  funcringcsetc  44657
  Copyright terms: Public domain W3C validator