MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscafval Structured version   Visualization version   GIF version

Theorem psrvscafval 21891
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Nov-2024.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrvscafval = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,,𝐼,𝑥   𝑓,𝐾,𝑥   𝐷,𝑓,𝑥   𝑅,𝑓,𝑥   · ,𝑓,𝑥   ,𝑓,𝑥
Allowed substitution hints:   𝐵()   𝐷()   𝑅()   𝑆(𝑥,𝑓,)   ()   · ()   𝐾()

Proof of Theorem psrvscafval
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2731 . . . . 5 (+g𝑅) = (+g𝑅)
4 psrvsca.m . . . . 5 · = (.r𝑅)
5 eqid 2731 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrvsca.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 21876 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
10 eqid 2731 . . . . . 6 (+g𝑆) = (+g𝑆)
111, 7, 3, 10psrplusg 21879 . . . . 5 (+g𝑆) = ( ∘f (+g𝑅) ↾ (𝐵 × 𝐵))
12 eqid 2731 . . . . . 6 (.r𝑆) = (.r𝑆)
131, 7, 4, 12, 6psrmulr 21885 . . . . 5 (.r𝑆) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
14 eqid 2731 . . . . 5 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
15 eqidd 2732 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
16 simpr 484 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
171, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 8, 16psrval 21858 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1817fveq2d 6832 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
19 psrvsca.n . . 3 = ( ·𝑠𝑆)
202fvexi 6842 . . . . 5 𝐾 ∈ V
217fvexi 6842 . . . . 5 𝐵 ∈ V
2220, 21mpoex 8017 . . . 4 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) ∈ V
23 psrvalstr 21859 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
24 vscaid 17230 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
25 snsstp2 4768 . . . . . 6 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}
26 ssun2 4128 . . . . . 6 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2725, 26sstri 3939 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2823, 24, 27strfv 17120 . . . 4 ((𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) ∈ V → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2922, 28ax-mp 5 . . 3 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
3018, 19, 293eqtr4g 2791 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
31 eqid 2731 . . . . . 6 ∅ = ∅
32 fn0 6618 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
3331, 32mpbir 231 . . . . 5 ∅ Fn ∅
34 reldmpsr 21857 . . . . . . . . . 10 Rel dom mPwSer
3534ovprc 7390 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
361, 35eqtrid 2778 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3736fveq2d 6832 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘∅))
3824str0 17106 . . . . . . 7 ∅ = ( ·𝑠 ‘∅)
3937, 19, 383eqtr4g 2791 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
4034, 1, 7elbasov 17133 . . . . . . . . . 10 (𝑓𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4140con3i 154 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ¬ 𝑓𝐵)
4241eq0rdv 4356 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4342xpeq2d 5649 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = (𝐾 × ∅))
44 xp0 5719 . . . . . . 7 (𝐾 × ∅) = ∅
4543, 44eqtrdi 2782 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = ∅)
4639, 45fneq12d 6582 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( Fn (𝐾 × 𝐵) ↔ ∅ Fn ∅))
4733, 46mpbiri 258 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → Fn (𝐾 × 𝐵))
48 fnov 7483 . . . 4 ( Fn (𝐾 × 𝐵) ↔ = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
4947, 48sylib 218 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5041pm2.21d 121 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓)))
5150a1d 25 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾 → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓))))
52513imp 1110 . . . 4 ((¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑥𝐾𝑓𝐵) → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓))
5352mpoeq3dva 7429 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5449, 53eqtr4d 2769 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
5530, 54pm2.61i 182 1 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cun 3895  c0 4282  {csn 4575  {ctp 4579  cop 4581   × cxp 5617  ccnv 5618  cima 5622   Fn wfn 6482  cfv 6487  (class class class)co 7352  cmpo 7354  f cof 7614  m cmap 8756  Fincfn 8875  1c1 11013  cn 12131  9c9 12193  0cn0 12387  ndxcnx 17110  Basecbs 17126  +gcplusg 17167  .rcmulr 17168  Scalarcsca 17170   ·𝑠 cvsca 17171  TopSetcts 17173  TopOpenctopn 17331  tcpt 17348   mPwSer cmps 21847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-struct 17064  df-slot 17099  df-ndx 17111  df-base 17127  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-tset 17186  df-psr 21852
This theorem is referenced by:  psrvsca  21892
  Copyright terms: Public domain W3C validator