MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscafval Structured version   Visualization version   GIF version

Theorem psrvscafval 21878
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Nov-2024.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrvscafval = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,,𝐼,𝑥   𝑓,𝐾,𝑥   𝐷,𝑓,𝑥   𝑅,𝑓,𝑥   · ,𝑓,𝑥   ,𝑓,𝑥
Allowed substitution hints:   𝐵()   𝐷()   𝑅()   𝑆(𝑥,𝑓,)   ()   · ()   𝐾()

Proof of Theorem psrvscafval
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2730 . . . . 5 (+g𝑅) = (+g𝑅)
4 psrvsca.m . . . . 5 · = (.r𝑅)
5 eqid 2730 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrvsca.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 21863 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
10 eqid 2730 . . . . . 6 (+g𝑆) = (+g𝑆)
111, 7, 3, 10psrplusg 21866 . . . . 5 (+g𝑆) = ( ∘f (+g𝑅) ↾ (𝐵 × 𝐵))
12 eqid 2730 . . . . . 6 (.r𝑆) = (.r𝑆)
131, 7, 4, 12, 6psrmulr 21872 . . . . 5 (.r𝑆) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
14 eqid 2730 . . . . 5 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
15 eqidd 2731 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
16 simpr 484 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
171, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 8, 16psrval 21845 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1817fveq2d 6821 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
19 psrvsca.n . . 3 = ( ·𝑠𝑆)
202fvexi 6831 . . . . 5 𝐾 ∈ V
217fvexi 6831 . . . . 5 𝐵 ∈ V
2220, 21mpoex 8006 . . . 4 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) ∈ V
23 psrvalstr 21846 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
24 vscaid 17216 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
25 snsstp2 4767 . . . . . 6 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}
26 ssun2 4127 . . . . . 6 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2725, 26sstri 3942 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2823, 24, 27strfv 17106 . . . 4 ((𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) ∈ V → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2922, 28ax-mp 5 . . 3 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
3018, 19, 293eqtr4g 2790 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
31 eqid 2730 . . . . . 6 ∅ = ∅
32 fn0 6608 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
3331, 32mpbir 231 . . . . 5 ∅ Fn ∅
34 reldmpsr 21844 . . . . . . . . . 10 Rel dom mPwSer
3534ovprc 7379 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
361, 35eqtrid 2777 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3736fveq2d 6821 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘∅))
3824str0 17092 . . . . . . 7 ∅ = ( ·𝑠 ‘∅)
3937, 19, 383eqtr4g 2790 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
4034, 1, 7elbasov 17119 . . . . . . . . . 10 (𝑓𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4140con3i 154 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ¬ 𝑓𝐵)
4241eq0rdv 4355 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4342xpeq2d 5644 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = (𝐾 × ∅))
44 xp0 6102 . . . . . . 7 (𝐾 × ∅) = ∅
4543, 44eqtrdi 2781 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = ∅)
4639, 45fneq12d 6572 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( Fn (𝐾 × 𝐵) ↔ ∅ Fn ∅))
4733, 46mpbiri 258 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → Fn (𝐾 × 𝐵))
48 fnov 7472 . . . 4 ( Fn (𝐾 × 𝐵) ↔ = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
4947, 48sylib 218 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5041pm2.21d 121 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓)))
5150a1d 25 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾 → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓))))
52513imp 1110 . . . 4 ((¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑥𝐾𝑓𝐵) → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓))
5352mpoeq3dva 7418 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5449, 53eqtr4d 2768 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
5530, 54pm2.61i 182 1 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  cun 3898  c0 4281  {csn 4574  {ctp 4578  cop 4580   × cxp 5612  ccnv 5613  cima 5617   Fn wfn 6472  cfv 6477  (class class class)co 7341  cmpo 7343  f cof 7603  m cmap 8745  Fincfn 8864  1c1 10999  cn 12117  9c9 12179  0cn0 12373  ndxcnx 17096  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  Scalarcsca 17156   ·𝑠 cvsca 17157  TopSetcts 17159  TopOpenctopn 17317  tcpt 17334   mPwSer cmps 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-tset 17172  df-psr 21839
This theorem is referenced by:  psrvsca  21879
  Copyright terms: Public domain W3C validator