MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscafval Structured version   Visualization version   GIF version

Theorem psrvscafval 21991
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Nov-2024.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrvscafval = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,,𝐼,𝑥   𝑓,𝐾,𝑥   𝐷,𝑓,𝑥   𝑅,𝑓,𝑥   · ,𝑓,𝑥   ,𝑓,𝑥
Allowed substitution hints:   𝐵()   𝐷()   𝑅()   𝑆(𝑥,𝑓,)   ()   · ()   𝐾()

Proof of Theorem psrvscafval
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2740 . . . . 5 (+g𝑅) = (+g𝑅)
4 psrvsca.m . . . . 5 · = (.r𝑅)
5 eqid 2740 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrvsca.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 21976 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
10 eqid 2740 . . . . . 6 (+g𝑆) = (+g𝑆)
111, 7, 3, 10psrplusg 21979 . . . . 5 (+g𝑆) = ( ∘f (+g𝑅) ↾ (𝐵 × 𝐵))
12 eqid 2740 . . . . . 6 (.r𝑆) = (.r𝑆)
131, 7, 4, 12, 6psrmulr 21985 . . . . 5 (.r𝑆) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
14 eqid 2740 . . . . 5 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
15 eqidd 2741 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
16 simpr 484 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
171, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 8, 16psrval 21958 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1817fveq2d 6924 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
19 psrvsca.n . . 3 = ( ·𝑠𝑆)
202fvexi 6934 . . . . 5 𝐾 ∈ V
217fvexi 6934 . . . . 5 𝐵 ∈ V
2220, 21mpoex 8120 . . . 4 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) ∈ V
23 psrvalstr 21959 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
24 vscaid 17379 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
25 snsstp2 4842 . . . . . 6 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}
26 ssun2 4202 . . . . . 6 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2725, 26sstri 4018 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2823, 24, 27strfv 17251 . . . 4 ((𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) ∈ V → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2922, 28ax-mp 5 . . 3 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
3018, 19, 293eqtr4g 2805 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
31 eqid 2740 . . . . . 6 ∅ = ∅
32 fn0 6711 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
3331, 32mpbir 231 . . . . 5 ∅ Fn ∅
34 reldmpsr 21957 . . . . . . . . . 10 Rel dom mPwSer
3534ovprc 7486 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
361, 35eqtrid 2792 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3736fveq2d 6924 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘∅))
3824str0 17236 . . . . . . 7 ∅ = ( ·𝑠 ‘∅)
3937, 19, 383eqtr4g 2805 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
4034, 1, 7elbasov 17265 . . . . . . . . . 10 (𝑓𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4140con3i 154 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ¬ 𝑓𝐵)
4241eq0rdv 4430 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4342xpeq2d 5730 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = (𝐾 × ∅))
44 xp0 6189 . . . . . . 7 (𝐾 × ∅) = ∅
4543, 44eqtrdi 2796 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = ∅)
4639, 45fneq12d 6674 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( Fn (𝐾 × 𝐵) ↔ ∅ Fn ∅))
4733, 46mpbiri 258 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → Fn (𝐾 × 𝐵))
48 fnov 7581 . . . 4 ( Fn (𝐾 × 𝐵) ↔ = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
4947, 48sylib 218 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5041pm2.21d 121 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓)))
5150a1d 25 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾 → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓))))
52513imp 1111 . . . 4 ((¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑥𝐾𝑓𝐵) → ((𝐷 × {𝑥}) ∘f · 𝑓) = (𝑥 𝑓))
5352mpoeq3dva 7527 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5449, 53eqtr4d 2783 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)))
5530, 54pm2.61i 182 1 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cun 3974  c0 4352  {csn 4648  {ctp 4652  cop 4654   × cxp 5698  ccnv 5699  cima 5703   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  m cmap 8884  Fincfn 9003  1c1 11185  cn 12293  9c9 12355  0cn0 12553  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  TopSetcts 17317  TopOpenctopn 17481  tcpt 17498   mPwSer cmps 21947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-psr 21952
This theorem is referenced by:  psrvsca  21992
  Copyright terms: Public domain W3C validator