| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqfn | Structured version Visualization version GIF version | ||
| Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqfn | ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq1 13976 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)) | |
| 2 | fveq2 6861 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
| 3 | 1, 2 | fneq12d 6616 | . 2 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ↔ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) Fn (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
| 4 | 0z 12547 | . . . 4 ⊢ 0 ∈ ℤ | |
| 5 | 4 | elimel 4561 | . . 3 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
| 6 | eqid 2730 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) | |
| 7 | fvex 6874 | . . 3 ⊢ (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V | |
| 8 | eqid 2730 | . . 3 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) | |
| 9 | 8 | seqval 13984 | . . 3 ⊢ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) |
| 10 | 5, 6, 7, 8, 9 | uzrdgfni 13930 | . 2 ⊢ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) Fn (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) |
| 11 | 3, 10 | dedth 4550 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4491 〈cop 4598 ↦ cmpt 5191 ↾ cres 5643 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ωcom 7845 reccrdg 8380 0cc0 11075 1c1 11076 + caddc 11078 ℤcz 12536 ℤ≥cuz 12800 seqcseq 13973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 |
| This theorem is referenced by: seqexw 13989 seqf2 13993 seqfeq2 13997 seqfeq 13999 seqfeq3 14024 ser0f 14027 facnn 14247 fac0 14248 seqshft 15058 prodf1f 15865 efcvgfsum 16059 seq1st 16548 prmrec 16900 gsumpropd2lem 18613 mulgfval 19008 ovolunlem1 25405 ovoliunlem1 25410 volsup 25464 mtest 26320 mtestbdd 26321 pserulm 26338 pserdvlem2 26345 emcllem5 26917 lgamgulm2 26953 lgamcvglem 26957 gamcvg2lem 26976 esumfsup 34067 esumpcvgval 34075 esumcvg 34083 esumcvgsum 34085 esumsup 34086 sseqfv1 34387 sseqfn 34388 sseqfv2 34392 faclimlem1 35737 knoppcnlem8 36495 knoppcnlem11 36498 mblfinlem2 37659 ovoliunnfl 37663 voliunnfl 37665 |
| Copyright terms: Public domain | W3C validator |