Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reschomf Structured version   Visualization version   GIF version

Theorem reschomf 17093
 Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
reschomf (𝜑𝐻 = (Homf𝐷))

Proof of Theorem reschomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
2 rescbas.b . . . 4 𝐵 = (Base‘𝐶)
3 rescbas.c . . . 4 (𝜑𝐶𝑉)
4 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 rescbas.s . . . 4 (𝜑𝑆𝐵)
61, 2, 3, 4, 5reschom 17092 . . 3 (𝜑𝐻 = (Hom ‘𝐷))
71, 2, 3, 4, 5rescbas 17091 . . . . . . 7 (𝜑𝑆 = (Base‘𝐷))
87sqxpeqd 5580 . . . . . 6 (𝜑 → (𝑆 × 𝑆) = ((Base‘𝐷) × (Base‘𝐷)))
96, 8fneq12d 6441 . . . . 5 (𝜑 → (𝐻 Fn (𝑆 × 𝑆) ↔ (Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
104, 9mpbid 234 . . . 4 (𝜑 → (Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
11 fnov 7274 . . . 4 ((Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Hom ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
1210, 11sylib 220 . . 3 (𝜑 → (Hom ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
136, 12eqtrd 2854 . 2 (𝜑𝐻 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
14 eqid 2819 . . 3 (Homf𝐷) = (Homf𝐷)
15 eqid 2819 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2819 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
1714, 15, 16homffval 16952 . 2 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦))
1813, 17syl6eqr 2872 1 (𝜑𝐻 = (Homf𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530   ∈ wcel 2107   ⊆ wss 3934   × cxp 5546   Fn wfn 6343  ‘cfv 6348  (class class class)co 7148   ∈ cmpo 7150  Basecbs 16475  Hom chom 16568  Homf chomf 16929   ↾cat cresc 17070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-hom 16581  df-homf 16933  df-resc 17073 This theorem is referenced by:  subsubc  17115
 Copyright terms: Public domain W3C validator