MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fpar Structured version   Visualization version   GIF version

Theorem ex-fpar 30389
Description: Formalized example provided in the comment for fpar 8113. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
ex-fpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
ex-fpar.a 𝐴 = (0[,)+∞)
ex-fpar.b 𝐵 = ℝ
ex-fpar.f 𝐹 = (√ ↾ 𝐴)
ex-fpar.g 𝐺 = (sin ↾ 𝐵)
Assertion
Ref Expression
ex-fpar ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))

Proof of Theorem ex-fpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7406 . 2 (𝑋( + ∘ 𝐻)𝑌) = (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩)
2 sqrtf 15380 . . . . . . . . 9 √:ℂ⟶ℂ
3 ffn 6705 . . . . . . . . 9 (√:ℂ⟶ℂ → √ Fn ℂ)
42, 3ax-mp 5 . . . . . . . 8 √ Fn ℂ
5 rge0ssre 13471 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
6 ax-resscn 11184 . . . . . . . . 9 ℝ ⊆ ℂ
75, 6sstri 3968 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
8 fnssres 6660 . . . . . . . . 9 ((√ Fn ℂ ∧ (0[,)+∞) ⊆ ℂ) → (√ ↾ (0[,)+∞)) Fn (0[,)+∞))
9 ex-fpar.a . . . . . . . . . . 11 𝐴 = (0[,)+∞)
109reseq2i 5963 . . . . . . . . . 10 (√ ↾ 𝐴) = (√ ↾ (0[,)+∞))
1110fneq1i 6634 . . . . . . . . 9 ((√ ↾ 𝐴) Fn (0[,)+∞) ↔ (√ ↾ (0[,)+∞)) Fn (0[,)+∞))
128, 11sylibr 234 . . . . . . . 8 ((√ Fn ℂ ∧ (0[,)+∞) ⊆ ℂ) → (√ ↾ 𝐴) Fn (0[,)+∞))
134, 7, 12mp2an 692 . . . . . . 7 (√ ↾ 𝐴) Fn (0[,)+∞)
14 ex-fpar.f . . . . . . . 8 𝐹 = (√ ↾ 𝐴)
15 id 22 . . . . . . . . 9 (𝐹 = (√ ↾ 𝐴) → 𝐹 = (√ ↾ 𝐴))
169a1i 11 . . . . . . . . 9 (𝐹 = (√ ↾ 𝐴) → 𝐴 = (0[,)+∞))
1715, 16fneq12d 6632 . . . . . . . 8 (𝐹 = (√ ↾ 𝐴) → (𝐹 Fn 𝐴 ↔ (√ ↾ 𝐴) Fn (0[,)+∞)))
1814, 17ax-mp 5 . . . . . . 7 (𝐹 Fn 𝐴 ↔ (√ ↾ 𝐴) Fn (0[,)+∞))
1913, 18mpbir 231 . . . . . 6 𝐹 Fn 𝐴
20 sinf 16140 . . . . . . . . 9 sin:ℂ⟶ℂ
21 ffn 6705 . . . . . . . . 9 (sin:ℂ⟶ℂ → sin Fn ℂ)
2220, 21ax-mp 5 . . . . . . . 8 sin Fn ℂ
23 fnssres 6660 . . . . . . . . 9 ((sin Fn ℂ ∧ ℝ ⊆ ℂ) → (sin ↾ ℝ) Fn ℝ)
24 ex-fpar.b . . . . . . . . . . 11 𝐵 = ℝ
2524reseq2i 5963 . . . . . . . . . 10 (sin ↾ 𝐵) = (sin ↾ ℝ)
2625fneq1i 6634 . . . . . . . . 9 ((sin ↾ 𝐵) Fn ℝ ↔ (sin ↾ ℝ) Fn ℝ)
2723, 26sylibr 234 . . . . . . . 8 ((sin Fn ℂ ∧ ℝ ⊆ ℂ) → (sin ↾ 𝐵) Fn ℝ)
2822, 6, 27mp2an 692 . . . . . . 7 (sin ↾ 𝐵) Fn ℝ
29 ex-fpar.g . . . . . . . 8 𝐺 = (sin ↾ 𝐵)
30 id 22 . . . . . . . . 9 (𝐺 = (sin ↾ 𝐵) → 𝐺 = (sin ↾ 𝐵))
3124a1i 11 . . . . . . . . 9 (𝐺 = (sin ↾ 𝐵) → 𝐵 = ℝ)
3230, 31fneq12d 6632 . . . . . . . 8 (𝐺 = (sin ↾ 𝐵) → (𝐺 Fn 𝐵 ↔ (sin ↾ 𝐵) Fn ℝ))
3329, 32ax-mp 5 . . . . . . 7 (𝐺 Fn 𝐵 ↔ (sin ↾ 𝐵) Fn ℝ)
3428, 33mpbir 231 . . . . . 6 𝐺 Fn 𝐵
35 ex-fpar.h . . . . . . 7 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
3635fpar 8113 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
3719, 34, 36mp2an 692 . . . . 5 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
38 opex 5439 . . . . 5 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
3937, 38fnmpoi 8067 . . . 4 𝐻 Fn (𝐴 × 𝐵)
40 opelxpi 5691 . . . 4 ((𝑋𝐴𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
41 fvco2 6975 . . . 4 ((𝐻 Fn (𝐴 × 𝐵) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵)) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)))
4239, 40, 41sylancr 587 . . 3 ((𝑋𝐴𝑌𝐵) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)))
43 simpl 482 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
44 simpr 484 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
4537, 43, 44fvproj 8131 . . . 4 ((𝑋𝐴𝑌𝐵) → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
4645fveq2d 6879 . . 3 ((𝑋𝐴𝑌𝐵) → ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)) = ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩))
47 df-ov 7406 . . . 4 ((𝐹𝑋) + (𝐺𝑌)) = ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩)
4814fveq1i 6876 . . . . . 6 (𝐹𝑋) = ((√ ↾ 𝐴)‘𝑋)
49 fvres 6894 . . . . . 6 (𝑋𝐴 → ((√ ↾ 𝐴)‘𝑋) = (√‘𝑋))
5048, 49eqtrid 2782 . . . . 5 (𝑋𝐴 → (𝐹𝑋) = (√‘𝑋))
5129fveq1i 6876 . . . . . 6 (𝐺𝑌) = ((sin ↾ 𝐵)‘𝑌)
52 fvres 6894 . . . . . 6 (𝑌𝐵 → ((sin ↾ 𝐵)‘𝑌) = (sin‘𝑌))
5351, 52eqtrid 2782 . . . . 5 (𝑌𝐵 → (𝐺𝑌) = (sin‘𝑌))
5450, 53oveqan12d 7422 . . . 4 ((𝑋𝐴𝑌𝐵) → ((𝐹𝑋) + (𝐺𝑌)) = ((√‘𝑋) + (sin‘𝑌)))
5547, 54eqtr3id 2784 . . 3 ((𝑋𝐴𝑌𝐵) → ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩) = ((√‘𝑋) + (sin‘𝑌)))
5642, 46, 553eqtrd 2774 . 2 ((𝑋𝐴𝑌𝐵) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ((√‘𝑋) + (sin‘𝑌)))
571, 56eqtrid 2782 1 ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926  cop 4607   × cxp 5652  ccnv 5653  cres 5656  ccom 5658   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  cc 11125  cr 11126  0cc0 11127   + caddc 11130  +∞cpnf 11264  [,)cico 13362  csqrt 15250  sincsin 16077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-ico 13366  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-fac 14290  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator