MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fpar Structured version   Visualization version   GIF version

Theorem ex-fpar 30424
Description: Formalized example provided in the comment for fpar 8056. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
ex-fpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
ex-fpar.a 𝐴 = (0[,)+∞)
ex-fpar.b 𝐵 = ℝ
ex-fpar.f 𝐹 = (√ ↾ 𝐴)
ex-fpar.g 𝐺 = (sin ↾ 𝐵)
Assertion
Ref Expression
ex-fpar ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))

Proof of Theorem ex-fpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7356 . 2 (𝑋( + ∘ 𝐻)𝑌) = (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩)
2 sqrtf 15289 . . . . . . . . 9 √:ℂ⟶ℂ
3 ffn 6656 . . . . . . . . 9 (√:ℂ⟶ℂ → √ Fn ℂ)
42, 3ax-mp 5 . . . . . . . 8 √ Fn ℂ
5 rge0ssre 13377 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
6 ax-resscn 11085 . . . . . . . . 9 ℝ ⊆ ℂ
75, 6sstri 3947 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
8 fnssres 6609 . . . . . . . . 9 ((√ Fn ℂ ∧ (0[,)+∞) ⊆ ℂ) → (√ ↾ (0[,)+∞)) Fn (0[,)+∞))
9 ex-fpar.a . . . . . . . . . . 11 𝐴 = (0[,)+∞)
109reseq2i 5931 . . . . . . . . . 10 (√ ↾ 𝐴) = (√ ↾ (0[,)+∞))
1110fneq1i 6583 . . . . . . . . 9 ((√ ↾ 𝐴) Fn (0[,)+∞) ↔ (√ ↾ (0[,)+∞)) Fn (0[,)+∞))
128, 11sylibr 234 . . . . . . . 8 ((√ Fn ℂ ∧ (0[,)+∞) ⊆ ℂ) → (√ ↾ 𝐴) Fn (0[,)+∞))
134, 7, 12mp2an 692 . . . . . . 7 (√ ↾ 𝐴) Fn (0[,)+∞)
14 ex-fpar.f . . . . . . . 8 𝐹 = (√ ↾ 𝐴)
15 id 22 . . . . . . . . 9 (𝐹 = (√ ↾ 𝐴) → 𝐹 = (√ ↾ 𝐴))
169a1i 11 . . . . . . . . 9 (𝐹 = (√ ↾ 𝐴) → 𝐴 = (0[,)+∞))
1715, 16fneq12d 6581 . . . . . . . 8 (𝐹 = (√ ↾ 𝐴) → (𝐹 Fn 𝐴 ↔ (√ ↾ 𝐴) Fn (0[,)+∞)))
1814, 17ax-mp 5 . . . . . . 7 (𝐹 Fn 𝐴 ↔ (√ ↾ 𝐴) Fn (0[,)+∞))
1913, 18mpbir 231 . . . . . 6 𝐹 Fn 𝐴
20 sinf 16051 . . . . . . . . 9 sin:ℂ⟶ℂ
21 ffn 6656 . . . . . . . . 9 (sin:ℂ⟶ℂ → sin Fn ℂ)
2220, 21ax-mp 5 . . . . . . . 8 sin Fn ℂ
23 fnssres 6609 . . . . . . . . 9 ((sin Fn ℂ ∧ ℝ ⊆ ℂ) → (sin ↾ ℝ) Fn ℝ)
24 ex-fpar.b . . . . . . . . . . 11 𝐵 = ℝ
2524reseq2i 5931 . . . . . . . . . 10 (sin ↾ 𝐵) = (sin ↾ ℝ)
2625fneq1i 6583 . . . . . . . . 9 ((sin ↾ 𝐵) Fn ℝ ↔ (sin ↾ ℝ) Fn ℝ)
2723, 26sylibr 234 . . . . . . . 8 ((sin Fn ℂ ∧ ℝ ⊆ ℂ) → (sin ↾ 𝐵) Fn ℝ)
2822, 6, 27mp2an 692 . . . . . . 7 (sin ↾ 𝐵) Fn ℝ
29 ex-fpar.g . . . . . . . 8 𝐺 = (sin ↾ 𝐵)
30 id 22 . . . . . . . . 9 (𝐺 = (sin ↾ 𝐵) → 𝐺 = (sin ↾ 𝐵))
3124a1i 11 . . . . . . . . 9 (𝐺 = (sin ↾ 𝐵) → 𝐵 = ℝ)
3230, 31fneq12d 6581 . . . . . . . 8 (𝐺 = (sin ↾ 𝐵) → (𝐺 Fn 𝐵 ↔ (sin ↾ 𝐵) Fn ℝ))
3329, 32ax-mp 5 . . . . . . 7 (𝐺 Fn 𝐵 ↔ (sin ↾ 𝐵) Fn ℝ)
3428, 33mpbir 231 . . . . . 6 𝐺 Fn 𝐵
35 ex-fpar.h . . . . . . 7 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
3635fpar 8056 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
3719, 34, 36mp2an 692 . . . . 5 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
38 opex 5411 . . . . 5 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
3937, 38fnmpoi 8012 . . . 4 𝐻 Fn (𝐴 × 𝐵)
40 opelxpi 5660 . . . 4 ((𝑋𝐴𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
41 fvco2 6924 . . . 4 ((𝐻 Fn (𝐴 × 𝐵) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵)) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)))
4239, 40, 41sylancr 587 . . 3 ((𝑋𝐴𝑌𝐵) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)))
43 simpl 482 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
44 simpr 484 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
4537, 43, 44fvproj 8074 . . . 4 ((𝑋𝐴𝑌𝐵) → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
4645fveq2d 6830 . . 3 ((𝑋𝐴𝑌𝐵) → ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)) = ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩))
47 df-ov 7356 . . . 4 ((𝐹𝑋) + (𝐺𝑌)) = ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩)
4814fveq1i 6827 . . . . . 6 (𝐹𝑋) = ((√ ↾ 𝐴)‘𝑋)
49 fvres 6845 . . . . . 6 (𝑋𝐴 → ((√ ↾ 𝐴)‘𝑋) = (√‘𝑋))
5048, 49eqtrid 2776 . . . . 5 (𝑋𝐴 → (𝐹𝑋) = (√‘𝑋))
5129fveq1i 6827 . . . . . 6 (𝐺𝑌) = ((sin ↾ 𝐵)‘𝑌)
52 fvres 6845 . . . . . 6 (𝑌𝐵 → ((sin ↾ 𝐵)‘𝑌) = (sin‘𝑌))
5351, 52eqtrid 2776 . . . . 5 (𝑌𝐵 → (𝐺𝑌) = (sin‘𝑌))
5450, 53oveqan12d 7372 . . . 4 ((𝑋𝐴𝑌𝐵) → ((𝐹𝑋) + (𝐺𝑌)) = ((√‘𝑋) + (sin‘𝑌)))
5547, 54eqtr3id 2778 . . 3 ((𝑋𝐴𝑌𝐵) → ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩) = ((√‘𝑋) + (sin‘𝑌)))
5642, 46, 553eqtrd 2768 . 2 ((𝑋𝐴𝑌𝐵) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ((√‘𝑋) + (sin‘𝑌)))
571, 56eqtrid 2776 1 ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  cop 4585   × cxp 5621  ccnv 5622  cres 5625  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  cc 11026  cr 11027  0cc0 11028   + caddc 11031  +∞cpnf 11165  [,)cico 13268  csqrt 15158  sincsin 15988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-fac 14199  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator