MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fpar Structured version   Visualization version   GIF version

Theorem ex-fpar 29406
Description: Formalized example provided in the comment for fpar 8048. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
ex-fpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
ex-fpar.a 𝐴 = (0[,)+∞)
ex-fpar.b 𝐵 = ℝ
ex-fpar.f 𝐹 = (√ ↾ 𝐴)
ex-fpar.g 𝐺 = (sin ↾ 𝐵)
Assertion
Ref Expression
ex-fpar ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))

Proof of Theorem ex-fpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7360 . 2 (𝑋( + ∘ 𝐻)𝑌) = (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩)
2 sqrtf 15248 . . . . . . . . 9 √:ℂ⟶ℂ
3 ffn 6668 . . . . . . . . 9 (√:ℂ⟶ℂ → √ Fn ℂ)
42, 3ax-mp 5 . . . . . . . 8 √ Fn ℂ
5 rge0ssre 13373 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
6 ax-resscn 11108 . . . . . . . . 9 ℝ ⊆ ℂ
75, 6sstri 3953 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
8 fnssres 6624 . . . . . . . . 9 ((√ Fn ℂ ∧ (0[,)+∞) ⊆ ℂ) → (√ ↾ (0[,)+∞)) Fn (0[,)+∞))
9 ex-fpar.a . . . . . . . . . . 11 𝐴 = (0[,)+∞)
109reseq2i 5934 . . . . . . . . . 10 (√ ↾ 𝐴) = (√ ↾ (0[,)+∞))
1110fneq1i 6599 . . . . . . . . 9 ((√ ↾ 𝐴) Fn (0[,)+∞) ↔ (√ ↾ (0[,)+∞)) Fn (0[,)+∞))
128, 11sylibr 233 . . . . . . . 8 ((√ Fn ℂ ∧ (0[,)+∞) ⊆ ℂ) → (√ ↾ 𝐴) Fn (0[,)+∞))
134, 7, 12mp2an 690 . . . . . . 7 (√ ↾ 𝐴) Fn (0[,)+∞)
14 ex-fpar.f . . . . . . . 8 𝐹 = (√ ↾ 𝐴)
15 id 22 . . . . . . . . 9 (𝐹 = (√ ↾ 𝐴) → 𝐹 = (√ ↾ 𝐴))
169a1i 11 . . . . . . . . 9 (𝐹 = (√ ↾ 𝐴) → 𝐴 = (0[,)+∞))
1715, 16fneq12d 6597 . . . . . . . 8 (𝐹 = (√ ↾ 𝐴) → (𝐹 Fn 𝐴 ↔ (√ ↾ 𝐴) Fn (0[,)+∞)))
1814, 17ax-mp 5 . . . . . . 7 (𝐹 Fn 𝐴 ↔ (√ ↾ 𝐴) Fn (0[,)+∞))
1913, 18mpbir 230 . . . . . 6 𝐹 Fn 𝐴
20 sinf 16006 . . . . . . . . 9 sin:ℂ⟶ℂ
21 ffn 6668 . . . . . . . . 9 (sin:ℂ⟶ℂ → sin Fn ℂ)
2220, 21ax-mp 5 . . . . . . . 8 sin Fn ℂ
23 fnssres 6624 . . . . . . . . 9 ((sin Fn ℂ ∧ ℝ ⊆ ℂ) → (sin ↾ ℝ) Fn ℝ)
24 ex-fpar.b . . . . . . . . . . 11 𝐵 = ℝ
2524reseq2i 5934 . . . . . . . . . 10 (sin ↾ 𝐵) = (sin ↾ ℝ)
2625fneq1i 6599 . . . . . . . . 9 ((sin ↾ 𝐵) Fn ℝ ↔ (sin ↾ ℝ) Fn ℝ)
2723, 26sylibr 233 . . . . . . . 8 ((sin Fn ℂ ∧ ℝ ⊆ ℂ) → (sin ↾ 𝐵) Fn ℝ)
2822, 6, 27mp2an 690 . . . . . . 7 (sin ↾ 𝐵) Fn ℝ
29 ex-fpar.g . . . . . . . 8 𝐺 = (sin ↾ 𝐵)
30 id 22 . . . . . . . . 9 (𝐺 = (sin ↾ 𝐵) → 𝐺 = (sin ↾ 𝐵))
3124a1i 11 . . . . . . . . 9 (𝐺 = (sin ↾ 𝐵) → 𝐵 = ℝ)
3230, 31fneq12d 6597 . . . . . . . 8 (𝐺 = (sin ↾ 𝐵) → (𝐺 Fn 𝐵 ↔ (sin ↾ 𝐵) Fn ℝ))
3329, 32ax-mp 5 . . . . . . 7 (𝐺 Fn 𝐵 ↔ (sin ↾ 𝐵) Fn ℝ)
3428, 33mpbir 230 . . . . . 6 𝐺 Fn 𝐵
35 ex-fpar.h . . . . . . 7 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
3635fpar 8048 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
3719, 34, 36mp2an 690 . . . . 5 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
38 opex 5421 . . . . 5 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
3937, 38fnmpoi 8002 . . . 4 𝐻 Fn (𝐴 × 𝐵)
40 opelxpi 5670 . . . 4 ((𝑋𝐴𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
41 fvco2 6938 . . . 4 ((𝐻 Fn (𝐴 × 𝐵) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵)) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)))
4239, 40, 41sylancr 587 . . 3 ((𝑋𝐴𝑌𝐵) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)))
43 simpl 483 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
44 simpr 485 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
4537, 43, 44fvproj 8066 . . . 4 ((𝑋𝐴𝑌𝐵) → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
4645fveq2d 6846 . . 3 ((𝑋𝐴𝑌𝐵) → ( + ‘(𝐻‘⟨𝑋, 𝑌⟩)) = ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩))
47 df-ov 7360 . . . 4 ((𝐹𝑋) + (𝐺𝑌)) = ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩)
4814fveq1i 6843 . . . . . 6 (𝐹𝑋) = ((√ ↾ 𝐴)‘𝑋)
49 fvres 6861 . . . . . 6 (𝑋𝐴 → ((√ ↾ 𝐴)‘𝑋) = (√‘𝑋))
5048, 49eqtrid 2788 . . . . 5 (𝑋𝐴 → (𝐹𝑋) = (√‘𝑋))
5129fveq1i 6843 . . . . . 6 (𝐺𝑌) = ((sin ↾ 𝐵)‘𝑌)
52 fvres 6861 . . . . . 6 (𝑌𝐵 → ((sin ↾ 𝐵)‘𝑌) = (sin‘𝑌))
5351, 52eqtrid 2788 . . . . 5 (𝑌𝐵 → (𝐺𝑌) = (sin‘𝑌))
5450, 53oveqan12d 7376 . . . 4 ((𝑋𝐴𝑌𝐵) → ((𝐹𝑋) + (𝐺𝑌)) = ((√‘𝑋) + (sin‘𝑌)))
5547, 54eqtr3id 2790 . . 3 ((𝑋𝐴𝑌𝐵) → ( + ‘⟨(𝐹𝑋), (𝐺𝑌)⟩) = ((√‘𝑋) + (sin‘𝑌)))
5642, 46, 553eqtrd 2780 . 2 ((𝑋𝐴𝑌𝐵) → (( + ∘ 𝐻)‘⟨𝑋, 𝑌⟩) = ((√‘𝑋) + (sin‘𝑌)))
571, 56eqtrid 2788 1 ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cin 3909  wss 3910  cop 4592   × cxp 5631  ccnv 5632  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  cc 11049  cr 11050  0cc0 11051   + caddc 11054  +∞cpnf 11186  [,)cico 13266  csqrt 15118  sincsin 15946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator