MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressprdsds Structured version   Visualization version   GIF version

Theorem ressprdsds 23724
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
ressprdsds.y (𝜑𝑌 = (𝑆Xs(𝑥𝐼𝑅)))
ressprdsds.h (𝜑𝐻 = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
ressprdsds.b 𝐵 = (Base‘𝐻)
ressprdsds.d 𝐷 = (dist‘𝑌)
ressprdsds.e 𝐸 = (dist‘𝐻)
ressprdsds.s (𝜑𝑆𝑈)
ressprdsds.t (𝜑𝑇𝑉)
ressprdsds.i (𝜑𝐼𝑊)
ressprdsds.r ((𝜑𝑥𝐼) → 𝑅𝑋)
ressprdsds.a ((𝜑𝑥𝐼) → 𝐴𝑍)
Assertion
Ref Expression
ressprdsds (𝜑𝐸 = (𝐷 ↾ (𝐵 × 𝐵)))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem ressprdsds
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7520 . . . . 5 ((𝑓𝐵𝑔𝐵) → (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔) = (𝑓𝐷𝑔))
21adantl 482 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔) = (𝑓𝐷𝑔))
3 ressprdsds.a . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐴𝑍)
4 eqid 2736 . . . . . . . . . . . . . 14 (𝑅s 𝐴) = (𝑅s 𝐴)
5 eqid 2736 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
64, 5ressds 17291 . . . . . . . . . . . . 13 (𝐴𝑍 → (dist‘𝑅) = (dist‘(𝑅s 𝐴)))
73, 6syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → (dist‘𝑅) = (dist‘(𝑅s 𝐴)))
87oveqd 7374 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥)) = ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥)))
98mpteq2dva 5205 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
109adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
1110rneqd 5893 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
1211uneq1d 4122 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}))
1312supeq1d 9382 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
14 eqid 2736 . . . . . . 7 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑥𝐼𝑅))
15 eqid 2736 . . . . . . 7 (Base‘(𝑆Xs(𝑥𝐼𝑅))) = (Base‘(𝑆Xs(𝑥𝐼𝑅)))
16 ressprdsds.s . . . . . . . 8 (𝜑𝑆𝑈)
1716adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑈)
18 ressprdsds.i . . . . . . . 8 (𝜑𝐼𝑊)
1918adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
20 ressprdsds.r . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑅𝑋)
2120ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
2221adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑋)
23 eqid 2736 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
244, 23ressbasss 17121 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅)
2524a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
2625ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
27 ss2ixp 8848 . . . . . . . . . . . . 13 (∀𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅) → X𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ X𝑥𝐼 (Base‘𝑅))
2826, 27syl 17 . . . . . . . . . . . 12 (𝜑X𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ X𝑥𝐼 (Base‘𝑅))
29 eqid 2736 . . . . . . . . . . . . 13 (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))) = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))
30 eqid 2736 . . . . . . . . . . . . 13 (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
31 ressprdsds.t . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
32 ovex 7390 . . . . . . . . . . . . . . 15 (𝑅s 𝐴) ∈ V
3332rgenw 3068 . . . . . . . . . . . . . 14 𝑥𝐼 (𝑅s 𝐴) ∈ V
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 (𝑅s 𝐴) ∈ V)
35 eqid 2736 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
3629, 30, 31, 18, 34, 35prdsbas3 17363 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = X𝑥𝐼 (Base‘(𝑅s 𝐴)))
3714, 15, 16, 18, 21, 23prdsbas3 17363 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆Xs(𝑥𝐼𝑅))) = X𝑥𝐼 (Base‘𝑅))
3828, 36, 373sstr4d 3991 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) ⊆ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
39 ressprdsds.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐻)
40 ressprdsds.h . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
4140fveq2d 6846 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐻) = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
4239, 41eqtrid 2788 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
43 ressprdsds.y . . . . . . . . . . . 12 (𝜑𝑌 = (𝑆Xs(𝑥𝐼𝑅)))
4443fveq2d 6846 . . . . . . . . . . 11 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼𝑅))))
4538, 42, 443sstr4d 3991 . . . . . . . . . 10 (𝜑𝐵 ⊆ (Base‘𝑌))
4645adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 ⊆ (Base‘𝑌))
4744adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼𝑅))))
4846, 47sseqtrd 3984 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 ⊆ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
49 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
5048, 49sseldd 3945 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
51 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5248, 51sseldd 3945 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
53 eqid 2736 . . . . . . 7 (dist‘(𝑆Xs(𝑥𝐼𝑅))) = (dist‘(𝑆Xs(𝑥𝐼𝑅)))
5414, 15, 17, 19, 22, 50, 52, 5, 53prdsdsval2 17366 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}), ℝ*, < ))
5531adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑇𝑉)
5633a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅s 𝐴) ∈ V)
5742adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
5849, 57eleqtrd 2840 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
5951, 57eleqtrd 2840 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
60 eqid 2736 . . . . . . 7 (dist‘(𝑅s 𝐴)) = (dist‘(𝑅s 𝐴))
61 eqid 2736 . . . . . . 7 (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
6229, 30, 55, 19, 56, 58, 59, 60, 61prdsdsval2 17366 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
6313, 54, 623eqtr4d 2786 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔) = (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔))
64 ressprdsds.d . . . . . . 7 𝐷 = (dist‘𝑌)
6543fveq2d 6846 . . . . . . 7 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼𝑅))))
6664, 65eqtrid 2788 . . . . . 6 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼𝑅))))
6766oveqdr 7385 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔))
68 ressprdsds.e . . . . . . 7 𝐸 = (dist‘𝐻)
6940fveq2d 6846 . . . . . . 7 (𝜑 → (dist‘𝐻) = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
7068, 69eqtrid 2788 . . . . . 6 (𝜑𝐸 = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
7170oveqdr 7385 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐸𝑔) = (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔))
7263, 67, 713eqtr4d 2786 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓𝐸𝑔))
732, 72eqtr2d 2777 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔))
7473ralrimivva 3197 . 2 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔))
7518mptexd 7174 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅s 𝐴)) ∈ V)
76 eqid 2736 . . . . . . 7 (𝑥𝐼 ↦ (𝑅s 𝐴)) = (𝑥𝐼 ↦ (𝑅s 𝐴))
7732, 76dmmpti 6645 . . . . . 6 dom (𝑥𝐼 ↦ (𝑅s 𝐴)) = 𝐼
7877a1i 11 . . . . 5 (𝜑 → dom (𝑥𝐼 ↦ (𝑅s 𝐴)) = 𝐼)
7929, 31, 75, 30, 78, 61prdsdsfn 17347 . . . 4 (𝜑 → (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) Fn ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))))
8042sqxpeqd 5665 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))))
8170, 80fneq12d 6597 . . . 4 (𝜑 → (𝐸 Fn (𝐵 × 𝐵) ↔ (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) Fn ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))))
8279, 81mpbird 256 . . 3 (𝜑𝐸 Fn (𝐵 × 𝐵))
8318mptexd 7174 . . . . . 6 (𝜑 → (𝑥𝐼𝑅) ∈ V)
84 dmmptg 6194 . . . . . . 7 (∀𝑥𝐼 𝑅𝑋 → dom (𝑥𝐼𝑅) = 𝐼)
8521, 84syl 17 . . . . . 6 (𝜑 → dom (𝑥𝐼𝑅) = 𝐼)
8614, 16, 83, 15, 85, 53prdsdsfn 17347 . . . . 5 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼𝑅))) Fn ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅)))))
8744sqxpeqd 5665 . . . . . 6 (𝜑 → ((Base‘𝑌) × (Base‘𝑌)) = ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅)))))
8866, 87fneq12d 6597 . . . . 5 (𝜑 → (𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)) ↔ (dist‘(𝑆Xs(𝑥𝐼𝑅))) Fn ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅))))))
8986, 88mpbird 256 . . . 4 (𝜑𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)))
90 xpss12 5648 . . . . 5 ((𝐵 ⊆ (Base‘𝑌) ∧ 𝐵 ⊆ (Base‘𝑌)) → (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌)))
9145, 45, 90syl2anc 584 . . . 4 (𝜑 → (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌)))
92 fnssres 6624 . . . 4 ((𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)) ∧ (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌))) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9389, 91, 92syl2anc 584 . . 3 (𝜑 → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
94 eqfnov2 7486 . . 3 ((𝐸 Fn (𝐵 × 𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) → (𝐸 = (𝐷 ↾ (𝐵 × 𝐵)) ↔ ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔)))
9582, 93, 94syl2anc 584 . 2 (𝜑 → (𝐸 = (𝐷 ↾ (𝐵 × 𝐵)) ↔ ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔)))
9674, 95mpbird 256 1 (𝜑𝐸 = (𝐷 ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cun 3908  wss 3910  {csn 4586  cmpt 5188   × cxp 5631  dom cdm 5633  ran crn 5634  cres 5635   Fn wfn 6491  cfv 6496  (class class class)co 7357  Xcixp 8835  supcsup 9376  0cc0 11051  *cxr 11188   < clt 11189  Basecbs 17083  s cress 17112  distcds 17142  Xscprds 17327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-prds 17329
This theorem is referenced by:  resspwsds  23725  prdsbnd2  36254
  Copyright terms: Public domain W3C validator