MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressprdsds Structured version   Visualization version   GIF version

Theorem ressprdsds 24396
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
ressprdsds.y (𝜑𝑌 = (𝑆Xs(𝑥𝐼𝑅)))
ressprdsds.h (𝜑𝐻 = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
ressprdsds.b 𝐵 = (Base‘𝐻)
ressprdsds.d 𝐷 = (dist‘𝑌)
ressprdsds.e 𝐸 = (dist‘𝐻)
ressprdsds.s (𝜑𝑆𝑈)
ressprdsds.t (𝜑𝑇𝑉)
ressprdsds.i (𝜑𝐼𝑊)
ressprdsds.r ((𝜑𝑥𝐼) → 𝑅𝑋)
ressprdsds.a ((𝜑𝑥𝐼) → 𝐴𝑍)
Assertion
Ref Expression
ressprdsds (𝜑𝐸 = (𝐷 ↾ (𝐵 × 𝐵)))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem ressprdsds
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7598 . . . . 5 ((𝑓𝐵𝑔𝐵) → (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔) = (𝑓𝐷𝑔))
21adantl 481 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔) = (𝑓𝐷𝑔))
3 ressprdsds.a . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐴𝑍)
4 eqid 2734 . . . . . . . . . . . . . 14 (𝑅s 𝐴) = (𝑅s 𝐴)
5 eqid 2734 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
64, 5ressds 17455 . . . . . . . . . . . . 13 (𝐴𝑍 → (dist‘𝑅) = (dist‘(𝑅s 𝐴)))
73, 6syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → (dist‘𝑅) = (dist‘(𝑅s 𝐴)))
87oveqd 7447 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥)) = ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥)))
98mpteq2dva 5247 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
109adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
1110rneqd 5951 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))))
1211uneq1d 4176 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}))
1312supeq1d 9483 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
14 eqid 2734 . . . . . . 7 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑥𝐼𝑅))
15 eqid 2734 . . . . . . 7 (Base‘(𝑆Xs(𝑥𝐼𝑅))) = (Base‘(𝑆Xs(𝑥𝐼𝑅)))
16 ressprdsds.s . . . . . . . 8 (𝜑𝑆𝑈)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑈)
18 ressprdsds.i . . . . . . . 8 (𝜑𝐼𝑊)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
20 ressprdsds.r . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑅𝑋)
2120ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑋)
23 eqid 2734 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
244, 23ressbasss 17283 . . . . . . . . . . . . . . 15 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅)
2524a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
2625ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅))
27 ss2ixp 8948 . . . . . . . . . . . . 13 (∀𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ (Base‘𝑅) → X𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ X𝑥𝐼 (Base‘𝑅))
2826, 27syl 17 . . . . . . . . . . . 12 (𝜑X𝑥𝐼 (Base‘(𝑅s 𝐴)) ⊆ X𝑥𝐼 (Base‘𝑅))
29 eqid 2734 . . . . . . . . . . . . 13 (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))) = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))
30 eqid 2734 . . . . . . . . . . . . 13 (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
31 ressprdsds.t . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
32 ovex 7463 . . . . . . . . . . . . . . 15 (𝑅s 𝐴) ∈ V
3332rgenw 3062 . . . . . . . . . . . . . 14 𝑥𝐼 (𝑅s 𝐴) ∈ V
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 (𝑅s 𝐴) ∈ V)
35 eqid 2734 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
3629, 30, 31, 18, 34, 35prdsbas3 17527 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = X𝑥𝐼 (Base‘(𝑅s 𝐴)))
3714, 15, 16, 18, 21, 23prdsbas3 17527 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆Xs(𝑥𝐼𝑅))) = X𝑥𝐼 (Base‘𝑅))
3828, 36, 373sstr4d 4042 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) ⊆ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
39 ressprdsds.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐻)
40 ressprdsds.h . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
4140fveq2d 6910 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐻) = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
4239, 41eqtrid 2786 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
43 ressprdsds.y . . . . . . . . . . . 12 (𝜑𝑌 = (𝑆Xs(𝑥𝐼𝑅)))
4443fveq2d 6910 . . . . . . . . . . 11 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼𝑅))))
4538, 42, 443sstr4d 4042 . . . . . . . . . 10 (𝜑𝐵 ⊆ (Base‘𝑌))
4645adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 ⊆ (Base‘𝑌))
4744adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼𝑅))))
4846, 47sseqtrd 4035 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 ⊆ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
49 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
5048, 49sseldd 3995 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
51 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5248, 51sseldd 3995 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼𝑅))))
53 eqid 2734 . . . . . . 7 (dist‘(𝑆Xs(𝑥𝐼𝑅))) = (dist‘(𝑆Xs(𝑥𝐼𝑅)))
5414, 15, 17, 19, 22, 50, 52, 5, 53prdsdsval2 17530 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘𝑅)(𝑔𝑥))) ∪ {0}), ℝ*, < ))
5531adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑇𝑉)
5633a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅s 𝐴) ∈ V)
5742adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
5849, 57eleqtrd 2840 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
5951, 57eleqtrd 2840 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
60 eqid 2734 . . . . . . 7 (dist‘(𝑅s 𝐴)) = (dist‘(𝑅s 𝐴))
61 eqid 2734 . . . . . . 7 (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))
6229, 30, 55, 19, 56, 58, 59, 60, 61prdsdsval2 17530 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅s 𝐴))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
6313, 54, 623eqtr4d 2784 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔) = (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔))
64 ressprdsds.d . . . . . . 7 𝐷 = (dist‘𝑌)
6543fveq2d 6910 . . . . . . 7 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼𝑅))))
6664, 65eqtrid 2786 . . . . . 6 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼𝑅))))
6766oveqdr 7458 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼𝑅)))𝑔))
68 ressprdsds.e . . . . . . 7 𝐸 = (dist‘𝐻)
6940fveq2d 6910 . . . . . . 7 (𝜑 → (dist‘𝐻) = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
7068, 69eqtrid 2786 . . . . . 6 (𝜑𝐸 = (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))
7170oveqdr 7458 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐸𝑔) = (𝑓(dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))𝑔))
7263, 67, 713eqtr4d 2784 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓𝐸𝑔))
732, 72eqtr2d 2775 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔))
7473ralrimivva 3199 . 2 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔))
7518mptexd 7243 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅s 𝐴)) ∈ V)
76 eqid 2734 . . . . . . 7 (𝑥𝐼 ↦ (𝑅s 𝐴)) = (𝑥𝐼 ↦ (𝑅s 𝐴))
7732, 76dmmpti 6712 . . . . . 6 dom (𝑥𝐼 ↦ (𝑅s 𝐴)) = 𝐼
7877a1i 11 . . . . 5 (𝜑 → dom (𝑥𝐼 ↦ (𝑅s 𝐴)) = 𝐼)
7929, 31, 75, 30, 78, 61prdsdsfn 17511 . . . 4 (𝜑 → (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) Fn ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))))
8042sqxpeqd 5720 . . . . 5 (𝜑 → (𝐵 × 𝐵) = ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴))))))
8170, 80fneq12d 6663 . . . 4 (𝜑 → (𝐸 Fn (𝐵 × 𝐵) ↔ (dist‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) Fn ((Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))) × (Base‘(𝑇Xs(𝑥𝐼 ↦ (𝑅s 𝐴)))))))
8279, 81mpbird 257 . . 3 (𝜑𝐸 Fn (𝐵 × 𝐵))
8318mptexd 7243 . . . . . 6 (𝜑 → (𝑥𝐼𝑅) ∈ V)
84 dmmptg 6263 . . . . . . 7 (∀𝑥𝐼 𝑅𝑋 → dom (𝑥𝐼𝑅) = 𝐼)
8521, 84syl 17 . . . . . 6 (𝜑 → dom (𝑥𝐼𝑅) = 𝐼)
8614, 16, 83, 15, 85, 53prdsdsfn 17511 . . . . 5 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼𝑅))) Fn ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅)))))
8744sqxpeqd 5720 . . . . . 6 (𝜑 → ((Base‘𝑌) × (Base‘𝑌)) = ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅)))))
8866, 87fneq12d 6663 . . . . 5 (𝜑 → (𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)) ↔ (dist‘(𝑆Xs(𝑥𝐼𝑅))) Fn ((Base‘(𝑆Xs(𝑥𝐼𝑅))) × (Base‘(𝑆Xs(𝑥𝐼𝑅))))))
8986, 88mpbird 257 . . . 4 (𝜑𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)))
90 xpss12 5703 . . . . 5 ((𝐵 ⊆ (Base‘𝑌) ∧ 𝐵 ⊆ (Base‘𝑌)) → (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌)))
9145, 45, 90syl2anc 584 . . . 4 (𝜑 → (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌)))
92 fnssres 6691 . . . 4 ((𝐷 Fn ((Base‘𝑌) × (Base‘𝑌)) ∧ (𝐵 × 𝐵) ⊆ ((Base‘𝑌) × (Base‘𝑌))) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9389, 91, 92syl2anc 584 . . 3 (𝜑 → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
94 eqfnov2 7562 . . 3 ((𝐸 Fn (𝐵 × 𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) → (𝐸 = (𝐷 ↾ (𝐵 × 𝐵)) ↔ ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔)))
9582, 93, 94syl2anc 584 . 2 (𝜑 → (𝐸 = (𝐷 ↾ (𝐵 × 𝐵)) ↔ ∀𝑓𝐵𝑔𝐵 (𝑓𝐸𝑔) = (𝑓(𝐷 ↾ (𝐵 × 𝐵))𝑔)))
9674, 95mpbird 257 1 (𝜑𝐸 = (𝐷 ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cun 3960  wss 3962  {csn 4630  cmpt 5230   × cxp 5686  dom cdm 5688  ran crn 5689  cres 5690   Fn wfn 6557  cfv 6562  (class class class)co 7430  Xcixp 8935  supcsup 9477  0cc0 11152  *cxr 11291   < clt 11292  Basecbs 17244  s cress 17273  distcds 17306  Xscprds 17491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17493
This theorem is referenced by:  resspwsds  24397  prdsbnd2  37781
  Copyright terms: Public domain W3C validator