![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneu2 | Structured version Visualization version GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.) |
Ref | Expression |
---|---|
fneu2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦⟨𝐵, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneu 6613 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) | |
2 | df-br 5107 | . . 3 ⊢ (𝐵𝐹𝑦 ↔ ⟨𝐵, 𝑦⟩ ∈ 𝐹) | |
3 | 2 | eubii 2580 | . 2 ⊢ (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦⟨𝐵, 𝑦⟩ ∈ 𝐹) |
4 | 1, 3 | sylib 217 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦⟨𝐵, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃!weu 2563 ⟨cop 4593 class class class wbr 5106 Fn wfn 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-fun 6499 df-fn 6500 |
This theorem is referenced by: feu 6719 |
Copyright terms: Public domain | W3C validator |