MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneu2 Structured version   Visualization version   GIF version

Theorem fneu2 6631
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
Assertion
Ref Expression
fneu2 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fneu2
StepHypRef Expression
1 fneu 6630 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
2 df-br 5110 . . 3 (𝐵𝐹𝑦 ↔ ⟨𝐵, 𝑦⟩ ∈ 𝐹)
32eubii 2579 . 2 (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
41, 3sylib 218 1 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ∃!weu 2562  cop 4597   class class class wbr 5109   Fn wfn 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-fun 6515  df-fn 6516
This theorem is referenced by:  feu  6738
  Copyright terms: Public domain W3C validator