![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneu2 | Structured version Visualization version GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.) |
Ref | Expression |
---|---|
fneu2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦⟨𝐵, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneu 6659 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) | |
2 | df-br 5149 | . . 3 ⊢ (𝐵𝐹𝑦 ↔ ⟨𝐵, 𝑦⟩ ∈ 𝐹) | |
3 | 2 | eubii 2579 | . 2 ⊢ (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦⟨𝐵, 𝑦⟩ ∈ 𝐹) |
4 | 1, 3 | sylib 217 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦⟨𝐵, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃!weu 2562 ⟨cop 4634 class class class wbr 5148 Fn wfn 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-fun 6545 df-fn 6546 |
This theorem is referenced by: feu 6767 |
Copyright terms: Public domain | W3C validator |