| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneu2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.) |
| Ref | Expression |
|---|---|
| fneu2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneu 6596 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) | |
| 2 | df-br 5094 | . . 3 ⊢ (𝐵𝐹𝑦 ↔ 〈𝐵, 𝑦〉 ∈ 𝐹) | |
| 3 | 2 | eubii 2582 | . 2 ⊢ (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
| 4 | 1, 3 | sylib 218 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃!weu 2565 〈cop 4581 class class class wbr 5093 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: feu 6704 |
| Copyright terms: Public domain | W3C validator |