MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneu2 Structured version   Visualization version   GIF version

Theorem fneu2 6597
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
Assertion
Ref Expression
fneu2 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fneu2
StepHypRef Expression
1 fneu 6596 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
2 df-br 5094 . . 3 (𝐵𝐹𝑦 ↔ ⟨𝐵, 𝑦⟩ ∈ 𝐹)
32eubii 2582 . 2 (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
41, 3sylib 218 1 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  ∃!weu 2565  cop 4581   class class class wbr 5093   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-fun 6488  df-fn 6489
This theorem is referenced by:  feu  6704
  Copyright terms: Public domain W3C validator