MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneu2 Structured version   Visualization version   GIF version

Theorem fneu2 6528
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
Assertion
Ref Expression
fneu2 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fneu2
StepHypRef Expression
1 fneu 6527 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
2 df-br 5071 . . 3 (𝐵𝐹𝑦 ↔ ⟨𝐵, 𝑦⟩ ∈ 𝐹)
32eubii 2585 . 2 (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
41, 3sylib 217 1 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ∃!weu 2568  cop 4564   class class class wbr 5070   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421
This theorem is referenced by:  feu  6634
  Copyright terms: Public domain W3C validator