Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnunres1 Structured version   Visualization version   GIF version

Theorem fnunres1 30369
Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
fnunres1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)

Proof of Theorem fnunres1
StepHypRef Expression
1 fndm 6425 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
213ad2ant1 1130 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐹 = 𝐴)
32reseq2d 5818 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = ((𝐹𝐺) ↾ 𝐴))
4 fnrel 6424 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
543ad2ant1 1130 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → Rel 𝐹)
6 fndm 6425 . . . . . 6 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
763ad2ant2 1131 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐺 = 𝐵)
82, 7ineq12d 4140 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
9 simp3 1135 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
108, 9eqtrd 2833 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅)
11 funresdm1 30368 . . 3 ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
125, 10, 11syl2anc 587 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
133, 12eqtr3d 2835 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  cun 3879  cin 3880  c0 4243  dom cdm 5519  cres 5521  Rel wrel 5524   Fn wfn 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-dm 5529  df-res 5531  df-fun 6326  df-fn 6327
This theorem is referenced by:  fnunres2  30441  tocycfvres2  30803  cycpmconjslem2  30847  lbsdiflsp0  31110  actfunsnf1o  31985
  Copyright terms: Public domain W3C validator