MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunres1 Structured version   Visualization version   GIF version

Theorem fnunres1 6691
Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
fnunres1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)

Proof of Theorem fnunres1
StepHypRef Expression
1 fndm 6682 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
213ad2ant1 1133 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐹 = 𝐴)
32reseq2d 6009 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = ((𝐹𝐺) ↾ 𝐴))
4 fnrel 6681 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
543ad2ant1 1133 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → Rel 𝐹)
6 fndm 6682 . . . . . 6 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
763ad2ant2 1134 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐺 = 𝐵)
82, 7ineq12d 4242 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
9 simp3 1138 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
108, 9eqtrd 2780 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅)
11 relresdm1 6062 . . 3 ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
125, 10, 11syl2anc 583 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
133, 12eqtr3d 2782 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  cun 3974  cin 3975  c0 4352  dom cdm 5700  cres 5702  Rel wrel 5705   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712  df-fun 6575  df-fn 6576
This theorem is referenced by:  fnunres2  6692  tocycfvres2  33104  cycpmconjslem2  33148  lbsdiflsp0  33639  actfunsnf1o  34581  evlselvlem  42541  evlselv  42542
  Copyright terms: Public domain W3C validator