![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnunres1 | Structured version Visualization version GIF version |
Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
Ref | Expression |
---|---|
fnunres1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6672 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → dom 𝐹 = 𝐴) |
3 | 2 | reseq2d 6000 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = ((𝐹 ∪ 𝐺) ↾ 𝐴)) |
4 | fnrel 6671 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
5 | 4 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → Rel 𝐹) |
6 | fndm 6672 | . . . . . 6 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
7 | 6 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → dom 𝐺 = 𝐵) |
8 | 2, 7 | ineq12d 4229 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
9 | simp3 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
10 | 8, 9 | eqtrd 2775 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
11 | relresdm1 6053 | . . 3 ⊢ ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = 𝐹) | |
12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = 𝐹) |
13 | 3, 12 | eqtr3d 2777 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-res 5701 df-fun 6565 df-fn 6566 |
This theorem is referenced by: fnunres2 6682 tocycfvres2 33114 cycpmconjslem2 33158 lbsdiflsp0 33654 actfunsnf1o 34598 dvun 42368 evlselvlem 42573 evlselv 42574 |
Copyright terms: Public domain | W3C validator |