![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnunres1 | Structured version Visualization version GIF version |
Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
Ref | Expression |
---|---|
fnunres1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6682 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → dom 𝐹 = 𝐴) |
3 | 2 | reseq2d 6009 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = ((𝐹 ∪ 𝐺) ↾ 𝐴)) |
4 | fnrel 6681 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → Rel 𝐹) |
6 | fndm 6682 | . . . . . 6 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
7 | 6 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → dom 𝐺 = 𝐵) |
8 | 2, 7 | ineq12d 4242 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
9 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
10 | 8, 9 | eqtrd 2780 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
11 | relresdm1 6062 | . . 3 ⊢ ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = 𝐹) | |
12 | 5, 10, 11 | syl2anc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = 𝐹) |
13 | 3, 12 | eqtr3d 2782 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fnunres2 6692 tocycfvres2 33104 cycpmconjslem2 33148 lbsdiflsp0 33639 actfunsnf1o 34581 evlselvlem 42541 evlselv 42542 |
Copyright terms: Public domain | W3C validator |