Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnunres1 Structured version   Visualization version   GIF version

Theorem fnunres1 30846
Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
fnunres1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)

Proof of Theorem fnunres1
StepHypRef Expression
1 fndm 6520 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
213ad2ant1 1131 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐹 = 𝐴)
32reseq2d 5880 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = ((𝐹𝐺) ↾ 𝐴))
4 fnrel 6519 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
543ad2ant1 1131 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → Rel 𝐹)
6 fndm 6520 . . . . . 6 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
763ad2ant2 1132 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐺 = 𝐵)
82, 7ineq12d 4144 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
9 simp3 1136 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
108, 9eqtrd 2778 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅)
11 funresdm1 30845 . . 3 ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
125, 10, 11syl2anc 583 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
133, 12eqtr3d 2780 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  cun 3881  cin 3882  c0 4253  dom cdm 5580  cres 5582  Rel wrel 5585   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dm 5590  df-res 5592  df-fun 6420  df-fn 6421
This theorem is referenced by:  fnunres2  30917  tocycfvres2  31280  cycpmconjslem2  31324  lbsdiflsp0  31609  actfunsnf1o  32484
  Copyright terms: Public domain W3C validator