MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunres1 Structured version   Visualization version   GIF version

Theorem fnunres1 6671
Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
fnunres1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)

Proof of Theorem fnunres1
StepHypRef Expression
1 fndm 6662 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
213ad2ant1 1130 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐹 = 𝐴)
32reseq2d 5989 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = ((𝐹𝐺) ↾ 𝐴))
4 fnrel 6661 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
543ad2ant1 1130 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → Rel 𝐹)
6 fndm 6662 . . . . . 6 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
763ad2ant2 1131 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → dom 𝐺 = 𝐵)
82, 7ineq12d 4215 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
9 simp3 1135 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
108, 9eqtrd 2768 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅)
11 relresdm1 6042 . . 3 ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
125, 10, 11syl2anc 582 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ dom 𝐹) = 𝐹)
133, 12eqtr3d 2770 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  cun 3947  cin 3948  c0 4326  dom cdm 5682  cres 5684  Rel wrel 5687   Fn wfn 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-dm 5692  df-res 5694  df-fun 6555  df-fn 6556
This theorem is referenced by:  fnunres2  6672  tocycfvres2  32861  cycpmconjslem2  32905  lbsdiflsp0  33365  actfunsnf1o  34277  evlselvlem  41868  evlselv  41869
  Copyright terms: Public domain W3C validator