| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnunres1 | Structured version Visualization version GIF version | ||
| Description: Restriction of a disjoint union to the domain of the first function. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| fnunres1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6584 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → dom 𝐹 = 𝐴) |
| 3 | 2 | reseq2d 5927 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = ((𝐹 ∪ 𝐺) ↾ 𝐴)) |
| 4 | fnrel 6583 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → Rel 𝐹) |
| 6 | fndm 6584 | . . . . . 6 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 7 | 6 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → dom 𝐺 = 𝐵) |
| 8 | 2, 7 | ineq12d 4168 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
| 9 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
| 10 | 8, 9 | eqtrd 2766 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
| 11 | relresdm1 5981 | . . 3 ⊢ ((Rel 𝐹 ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = 𝐹) | |
| 12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ dom 𝐹) = 𝐹) |
| 13 | 3, 12 | eqtr3d 2768 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnunres2 6594 tocycfvres2 33080 cycpmconjslem2 33124 gsumind 33310 lbsdiflsp0 33639 actfunsnf1o 34617 dvun 42462 evlselvlem 42689 evlselv 42690 |
| Copyright terms: Public domain | W3C validator |