Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresiOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of fnresi 6545 as of 27-Dec-2023. (Contributed by NM, 27-Aug-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fnresiOLD | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6450 | . . 3 ⊢ Fun I | |
2 | funres 6460 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ( I ↾ 𝐴) |
4 | dmresi 5950 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
5 | df-fn 6421 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
6 | 3, 4, 5 | mpbir2an 707 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 I cid 5479 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-fun 6420 df-fn 6421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |