Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresiOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of fnresi 6557 as of 27-Dec-2023. (Contributed by NM, 27-Aug-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fnresiOLD | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6462 | . . 3 ⊢ Fun I | |
2 | funres 6472 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ( I ↾ 𝐴) |
4 | dmresi 5958 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
5 | df-fn 6433 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
6 | 3, 4, 5 | mpbir2an 707 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 I cid 5487 dom cdm 5588 ↾ cres 5590 Fun wfun 6424 Fn wfn 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-res 5600 df-fun 6432 df-fn 6433 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |