MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnima Structured version   Visualization version   GIF version

Theorem fnima 6680
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnima (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)

Proof of Theorem fnima
StepHypRef Expression
1 df-ima 5689 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 fnresdm 6669 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
32rneqd 5937 . 2 (𝐹 Fn 𝐴 → ran (𝐹𝐴) = ran 𝐹)
41, 3eqtrid 2783 1 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ran crn 5677  cres 5678  cima 5679   Fn wfn 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546
This theorem is referenced by:  infdifsn  9658  cardinfima  10098  alephfp  10109  dprdf1o  19947  dprd2db  19958  lmhmrnlss  20809  frlmlbs  21575  frlmup3  21578  ellspd  21580  mpfsubrg  21890  pf1subrg  22100  tgrest  22896  uniiccdif  25340  uniioombllem3  25347  dvgt0lem2  25769  f1rnen  32135  cycpmco2rn  32569  r1pquslmic  32971  fedgmul  33019  zarclsint  33165  eulerpartlemn  33693  matunitlindflem2  36801  poimirlem15  36819  k0004lem1  43213  imasetpreimafvbijlemf  46380  fundcmpsurbijinjpreimafv  46386
  Copyright terms: Public domain W3C validator