| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version | ||
| Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | fnresdm 6657 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 3 | 2 | rneqd 5918 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
| 4 | 1, 3 | eqtrid 2782 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5655 ↾ cres 5656 “ cima 5657 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: infdifsn 9671 cardinfima 10111 alephfp 10122 dprdf1o 20015 dprd2db 20026 rnrhmsubrg 20565 lmhmrnlss 21008 frlmlbs 21757 frlmup3 21760 ellspd 21762 mpfsubrg 22061 pf1subrg 22286 tgrest 23097 uniiccdif 25531 uniioombllem3 25538 dvgt0lem2 25960 f1rnen 32607 cycpmco2rn 33136 r1pquslmic 33620 fedgmul 33671 zarclsint 33903 eulerpartlemn 34413 matunitlindflem2 37641 poimirlem15 37659 aks6d1c6lem3 42185 aks6d1c6lem5 42190 aks6d1c7lem1 42193 k0004lem1 44171 3f1oss1 47104 imasetpreimafvbijlemf 47415 fundcmpsurbijinjpreimafv 47421 |
| Copyright terms: Public domain | W3C validator |