![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version |
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5702 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | fnresdm 6688 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
3 | 2 | rneqd 5952 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
4 | 1, 3 | eqtrid 2787 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ran crn 5690 ↾ cres 5691 “ cima 5692 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 |
This theorem is referenced by: infdifsn 9695 cardinfima 10135 alephfp 10146 dprdf1o 20067 dprd2db 20078 rnrhmsubrg 20622 lmhmrnlss 21067 frlmlbs 21835 frlmup3 21838 ellspd 21840 mpfsubrg 22145 pf1subrg 22368 tgrest 23183 uniiccdif 25627 uniioombllem3 25634 dvgt0lem2 26057 f1rnen 32646 cycpmco2rn 33128 r1pquslmic 33611 fedgmul 33659 zarclsint 33833 eulerpartlemn 34363 matunitlindflem2 37604 poimirlem15 37622 aks6d1c6lem3 42154 aks6d1c6lem5 42159 aks6d1c7lem1 42162 k0004lem1 44137 3f1oss1 47025 imasetpreimafvbijlemf 47326 fundcmpsurbijinjpreimafv 47332 |
Copyright terms: Public domain | W3C validator |