Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version |
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | fnresdm 6551 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
3 | 2 | rneqd 5847 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
4 | 1, 3 | eqtrid 2790 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ran crn 5590 ↾ cres 5591 “ cima 5592 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 |
This theorem is referenced by: infdifsn 9415 cardinfima 9853 alephfp 9864 dprdf1o 19635 dprd2db 19646 lmhmrnlss 20312 frlmlbs 21004 frlmup3 21007 ellspd 21009 mpfsubrg 21313 pf1subrg 21514 tgrest 22310 uniiccdif 24742 uniioombllem3 24749 dvgt0lem2 25167 f1rnen 30964 cycpmco2rn 31392 fedgmul 31712 zarclsint 31822 eulerpartlemn 32348 matunitlindflem2 35774 poimirlem15 35792 k0004lem1 41757 imasetpreimafvbijlemf 44853 fundcmpsurbijinjpreimafv 44859 |
Copyright terms: Public domain | W3C validator |