| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version | ||
| Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5654 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | fnresdm 6640 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 3 | 2 | rneqd 5905 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
| 4 | 1, 3 | eqtrid 2777 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5642 ↾ cres 5643 “ cima 5644 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: infdifsn 9617 cardinfima 10057 alephfp 10068 dprdf1o 19971 dprd2db 19982 rnrhmsubrg 20521 lmhmrnlss 20964 frlmlbs 21713 frlmup3 21716 ellspd 21718 mpfsubrg 22017 pf1subrg 22242 tgrest 23053 uniiccdif 25486 uniioombllem3 25493 dvgt0lem2 25915 f1rnen 32560 cycpmco2rn 33089 r1pquslmic 33583 fedgmul 33634 zarclsint 33869 eulerpartlemn 34379 matunitlindflem2 37618 poimirlem15 37636 aks6d1c6lem3 42167 aks6d1c6lem5 42172 aks6d1c7lem1 42175 k0004lem1 44143 3f1oss1 47080 imasetpreimafvbijlemf 47406 fundcmpsurbijinjpreimafv 47412 |
| Copyright terms: Public domain | W3C validator |