MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnima Structured version   Visualization version   GIF version

Theorem fnima 6681
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnima (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)

Proof of Theorem fnima
StepHypRef Expression
1 df-ima 5690 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 fnresdm 6670 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
32rneqd 5938 . 2 (𝐹 Fn 𝐴 → ran (𝐹𝐴) = ran 𝐹)
41, 3eqtrid 2785 1 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ran crn 5678  cres 5679  cima 5680   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547
This theorem is referenced by:  infdifsn  9652  cardinfima  10092  alephfp  10103  dprdf1o  19902  dprd2db  19913  lmhmrnlss  20661  frlmlbs  21352  frlmup3  21355  ellspd  21357  mpfsubrg  21666  pf1subrg  21867  tgrest  22663  uniiccdif  25095  uniioombllem3  25102  dvgt0lem2  25520  f1rnen  31853  cycpmco2rn  32284  fedgmul  32716  zarclsint  32852  eulerpartlemn  33380  matunitlindflem2  36485  poimirlem15  36503  k0004lem1  42898  imasetpreimafvbijlemf  46069  fundcmpsurbijinjpreimafv  46075
  Copyright terms: Public domain W3C validator