| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version | ||
| Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5629 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | fnresdm 6600 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 3 | 2 | rneqd 5878 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
| 4 | 1, 3 | eqtrid 2778 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ran crn 5617 ↾ cres 5618 “ cima 5619 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: infdifsn 9547 cardinfima 9985 alephfp 9996 dprdf1o 19944 dprd2db 19955 rnrhmsubrg 20518 lmhmrnlss 20982 frlmlbs 21732 frlmup3 21735 ellspd 21737 mpfsubrg 22036 pf1subrg 22261 tgrest 23072 uniiccdif 25504 uniioombllem3 25511 dvgt0lem2 25933 f1rnen 32605 cycpmco2rn 33089 r1pquslmic 33566 fedgmul 33639 zarclsint 33880 eulerpartlemn 34389 matunitlindflem2 37656 poimirlem15 37674 aks6d1c6lem3 42204 aks6d1c6lem5 42209 aks6d1c7lem1 42212 k0004lem1 44179 3f1oss1 47105 imasetpreimafvbijlemf 47431 fundcmpsurbijinjpreimafv 47437 |
| Copyright terms: Public domain | W3C validator |