| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version | ||
| Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | fnresdm 6637 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 3 | 2 | rneqd 5902 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
| 4 | 1, 3 | eqtrid 2776 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5639 ↾ cres 5640 “ cima 5641 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: infdifsn 9610 cardinfima 10050 alephfp 10061 dprdf1o 19964 dprd2db 19975 rnrhmsubrg 20514 lmhmrnlss 20957 frlmlbs 21706 frlmup3 21709 ellspd 21711 mpfsubrg 22010 pf1subrg 22235 tgrest 23046 uniiccdif 25479 uniioombllem3 25486 dvgt0lem2 25908 f1rnen 32553 cycpmco2rn 33082 r1pquslmic 33576 fedgmul 33627 zarclsint 33862 eulerpartlemn 34372 matunitlindflem2 37611 poimirlem15 37629 aks6d1c6lem3 42160 aks6d1c6lem5 42165 aks6d1c7lem1 42168 k0004lem1 44136 3f1oss1 47076 imasetpreimafvbijlemf 47402 fundcmpsurbijinjpreimafv 47408 |
| Copyright terms: Public domain | W3C validator |