MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnima Structured version   Visualization version   GIF version

Theorem fnima 6563
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnima (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)

Proof of Theorem fnima
StepHypRef Expression
1 df-ima 5602 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 fnresdm 6551 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
32rneqd 5847 . 2 (𝐹 Fn 𝐴 → ran (𝐹𝐴) = ran 𝐹)
41, 3eqtrid 2790 1 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ran crn 5590  cres 5591  cima 5592   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436
This theorem is referenced by:  infdifsn  9415  cardinfima  9853  alephfp  9864  dprdf1o  19635  dprd2db  19646  lmhmrnlss  20312  frlmlbs  21004  frlmup3  21007  ellspd  21009  mpfsubrg  21313  pf1subrg  21514  tgrest  22310  uniiccdif  24742  uniioombllem3  24749  dvgt0lem2  25167  f1rnen  30964  cycpmco2rn  31392  fedgmul  31712  zarclsint  31822  eulerpartlemn  32348  matunitlindflem2  35774  poimirlem15  35792  k0004lem1  41757  imasetpreimafvbijlemf  44853  fundcmpsurbijinjpreimafv  44859
  Copyright terms: Public domain W3C validator