![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version |
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5713 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | fnresdm 6699 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
3 | 2 | rneqd 5963 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
4 | 1, 3 | eqtrid 2792 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ran crn 5701 ↾ cres 5702 “ cima 5703 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 |
This theorem is referenced by: infdifsn 9726 cardinfima 10166 alephfp 10177 dprdf1o 20076 dprd2db 20087 rnrhmsubrg 20633 lmhmrnlss 21072 frlmlbs 21840 frlmup3 21843 ellspd 21845 mpfsubrg 22150 pf1subrg 22373 tgrest 23188 uniiccdif 25632 uniioombllem3 25639 dvgt0lem2 26062 f1rnen 32648 cycpmco2rn 33118 r1pquslmic 33596 fedgmul 33644 zarclsint 33818 eulerpartlemn 34346 matunitlindflem2 37577 poimirlem15 37595 aks6d1c6lem3 42129 aks6d1c6lem5 42134 aks6d1c7lem1 42137 k0004lem1 44109 3f1oss1 46990 imasetpreimafvbijlemf 47275 fundcmpsurbijinjpreimafv 47281 |
Copyright terms: Public domain | W3C validator |