| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version | ||
| Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5632 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | fnresdm 6605 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 3 | 2 | rneqd 5882 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
| 4 | 1, 3 | eqtrid 2780 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ran crn 5620 ↾ cres 5621 “ cima 5622 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: infdifsn 9554 cardinfima 9995 alephfp 10006 dprdf1o 19948 dprd2db 19959 rnrhmsubrg 20522 lmhmrnlss 20986 frlmlbs 21736 frlmup3 21739 ellspd 21741 mpfsubrg 22039 pf1subrg 22264 tgrest 23075 uniiccdif 25507 uniioombllem3 25514 dvgt0lem2 25936 f1rnen 32612 cycpmco2rn 33101 r1pquslmic 33578 fedgmul 33665 zarclsint 33906 eulerpartlemn 34415 matunitlindflem2 37677 poimirlem15 37695 aks6d1c6lem3 42285 aks6d1c6lem5 42290 aks6d1c7lem1 42293 k0004lem1 44264 3f1oss1 47199 imasetpreimafvbijlemf 47525 fundcmpsurbijinjpreimafv 47531 |
| Copyright terms: Public domain | W3C validator |