![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnima | Structured version Visualization version GIF version |
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5690 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | fnresdm 6670 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
3 | 2 | rneqd 5938 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
4 | 1, 3 | eqtrid 2785 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ran crn 5678 ↾ cres 5679 “ cima 5680 Fn wfn 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 |
This theorem is referenced by: infdifsn 9652 cardinfima 10092 alephfp 10103 dprdf1o 19902 dprd2db 19913 lmhmrnlss 20661 frlmlbs 21352 frlmup3 21355 ellspd 21357 mpfsubrg 21666 pf1subrg 21867 tgrest 22663 uniiccdif 25095 uniioombllem3 25102 dvgt0lem2 25520 f1rnen 31853 cycpmco2rn 32284 fedgmul 32716 zarclsint 32852 eulerpartlemn 33380 matunitlindflem2 36485 poimirlem15 36503 k0004lem1 42898 imasetpreimafvbijlemf 46069 fundcmpsurbijinjpreimafv 46075 |
Copyright terms: Public domain | W3C validator |