| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnunop | Structured version Visualization version GIF version | ||
| Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnunop.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fnunop.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
| fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
| fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnunop | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 4 | fnsng 6541 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
| 6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
| 7 | disjsn 4665 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
| 9 | 1, 5, 8 | fnund 6604 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 10 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
| 11 | 10 | fneq1i 6586 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
| 12 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
| 13 | 12 | fneq2i 6587 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 14 | 11, 13 | bitri 275 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 15 | 9, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 {csn 4577 〈cop 4583 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6491 df-fn 6492 |
| This theorem is referenced by: fineqvac 35211 |
| Copyright terms: Public domain | W3C validator |