![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnunop | Structured version Visualization version GIF version |
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
fnunop.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fnunop.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩}) |
fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnunop | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
4 | fnsng 6605 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋}) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → {⟨𝑋, 𝑌⟩} Fn {𝑋}) |
6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
7 | disjsn 4716 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
9 | 1, 5, 8 | fnund 6669 | . 2 ⊢ (𝜑 → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋})) |
10 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩}) | |
11 | 10 | fneq1i 6651 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸) |
12 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
13 | 12 | fneq2i 6652 | . . 3 ⊢ ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋})) |
14 | 11, 13 | bitri 275 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋})) |
15 | 9, 14 | sylibr 233 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 ∩ cin 3946 ∅c0 4323 {csn 4629 ⟨cop 4635 Fn wfn 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-fun 6550 df-fn 6551 |
This theorem is referenced by: fineqvac 34717 |
Copyright terms: Public domain | W3C validator |