![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnunop | Structured version Visualization version GIF version |
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
fnunop.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fnunop.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnunop | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
4 | fnsng 6620 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
7 | disjsn 4716 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
9 | 1, 5, 8 | fnund 6684 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
10 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
11 | 10 | fneq1i 6666 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
12 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
13 | 12 | fneq2i 6667 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
14 | 11, 13 | bitri 275 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
15 | 9, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 〈cop 4637 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-fun 6565 df-fn 6566 |
This theorem is referenced by: fineqvac 35090 |
Copyright terms: Public domain | W3C validator |