MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunop Structured version   Visualization version   GIF version

Theorem fnunop 6665
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.)
Hypotheses
Ref Expression
fnunop.x (𝜑𝑋𝑉)
fnunop.y (𝜑𝑌𝑊)
fnunop.f (𝜑𝐹 Fn 𝐷)
fnunop.g 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
fnunop.e 𝐸 = (𝐷 ∪ {𝑋})
fnunop.d (𝜑 → ¬ 𝑋𝐷)
Assertion
Ref Expression
fnunop (𝜑𝐺 Fn 𝐸)

Proof of Theorem fnunop
StepHypRef Expression
1 fnunop.f . . 3 (𝜑𝐹 Fn 𝐷)
2 fnunop.x . . . 4 (𝜑𝑋𝑉)
3 fnunop.y . . . 4 (𝜑𝑌𝑊)
4 fnsng 6600 . . . 4 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
52, 3, 4syl2anc 584 . . 3 (𝜑 → {⟨𝑋, 𝑌⟩} Fn {𝑋})
6 fnunop.d . . . 4 (𝜑 → ¬ 𝑋𝐷)
7 disjsn 4715 . . . 4 ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐷)
86, 7sylibr 233 . . 3 (𝜑 → (𝐷 ∩ {𝑋}) = ∅)
91, 5, 8fnund 6664 . 2 (𝜑 → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
10 fnunop.g . . . 4 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
1110fneq1i 6646 . . 3 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸)
12 fnunop.e . . . 4 𝐸 = (𝐷 ∪ {𝑋})
1312fneq2i 6647 . . 3 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1411, 13bitri 274 . 2 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
159, 14sylibr 233 1 (𝜑𝐺 Fn 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  cun 3946  cin 3947  c0 4322  {csn 4628  cop 4634   Fn wfn 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-fun 6545  df-fn 6546
This theorem is referenced by:  fineqvac  34092
  Copyright terms: Public domain W3C validator