MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunop Structured version   Visualization version   GIF version

Theorem fnunop 6617
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.)
Hypotheses
Ref Expression
fnunop.x (𝜑𝑋𝑉)
fnunop.y (𝜑𝑌𝑊)
fnunop.f (𝜑𝐹 Fn 𝐷)
fnunop.g 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
fnunop.e 𝐸 = (𝐷 ∪ {𝑋})
fnunop.d (𝜑 → ¬ 𝑋𝐷)
Assertion
Ref Expression
fnunop (𝜑𝐺 Fn 𝐸)

Proof of Theorem fnunop
StepHypRef Expression
1 fnunop.f . . 3 (𝜑𝐹 Fn 𝐷)
2 fnunop.x . . . 4 (𝜑𝑋𝑉)
3 fnunop.y . . . 4 (𝜑𝑌𝑊)
4 fnsng 6554 . . . 4 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
52, 3, 4syl2anc 585 . . 3 (𝜑 → {⟨𝑋, 𝑌⟩} Fn {𝑋})
6 fnunop.d . . . 4 (𝜑 → ¬ 𝑋𝐷)
7 disjsn 4673 . . . 4 ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐷)
86, 7sylibr 233 . . 3 (𝜑 → (𝐷 ∩ {𝑋}) = ∅)
91, 5, 8fnund 6616 . 2 (𝜑 → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
10 fnunop.g . . . 4 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
1110fneq1i 6600 . . 3 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸)
12 fnunop.e . . . 4 𝐸 = (𝐷 ∪ {𝑋})
1312fneq2i 6601 . . 3 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1411, 13bitri 275 . 2 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
159, 14sylibr 233 1 (𝜑𝐺 Fn 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  cun 3909  cin 3910  c0 4283  {csn 4587  cop 4593   Fn wfn 6492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-fun 6499  df-fn 6500
This theorem is referenced by:  fineqvac  33755
  Copyright terms: Public domain W3C validator