Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnunop | Structured version Visualization version GIF version |
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
fnunop.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fnunop.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnunop | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
4 | fnsng 6470 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
7 | disjsn 4644 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
9 | 1, 5, 8 | fnund 6530 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
10 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
11 | 10 | fneq1i 6514 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
12 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
13 | 12 | fneq2i 6515 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
14 | 11, 13 | bitri 274 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
15 | 9, 14 | sylibr 233 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 〈cop 4564 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fineqvac 32966 |
Copyright terms: Public domain | W3C validator |