| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnunop | Structured version Visualization version GIF version | ||
| Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnunop.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fnunop.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
| fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
| fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnunop | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 4 | fnsng 6617 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
| 6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
| 7 | disjsn 4710 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
| 9 | 1, 5, 8 | fnund 6682 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 10 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
| 11 | 10 | fneq1i 6664 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
| 12 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
| 13 | 12 | fneq2i 6665 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 14 | 11, 13 | bitri 275 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 15 | 9, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ∩ cin 3949 ∅c0 4332 {csn 4625 〈cop 4631 Fn wfn 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-fun 6562 df-fn 6563 |
| This theorem is referenced by: fineqvac 35112 |
| Copyright terms: Public domain | W3C validator |