| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnunop | Structured version Visualization version GIF version | ||
| Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnunop.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fnunop.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
| fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
| fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnunop | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 4 | fnsng 6593 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
| 6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
| 7 | disjsn 4692 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
| 9 | 1, 5, 8 | fnund 6658 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 10 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
| 11 | 10 | fneq1i 6640 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
| 12 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
| 13 | 12 | fneq2i 6641 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 14 | 11, 13 | bitri 275 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 15 | 9, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 〈cop 4612 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 df-fn 6539 |
| This theorem is referenced by: fineqvac 35133 |
| Copyright terms: Public domain | W3C validator |