MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncofn Structured version   Visualization version   GIF version

Theorem fncofn 6598
Description: Composition of a function with domain and a function as a function with domain. Generalization of fnco 6599. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
fncofn ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))

Proof of Theorem fncofn
StepHypRef Expression
1 fnfun 6581 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funco 6521 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
31, 2sylan 580 . . 3 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → Fun (𝐹𝐺))
43funfnd 6512 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn dom (𝐹𝐺))
5 fndm 6584 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65adantr 480 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → dom 𝐹 = 𝐴)
76eqcomd 2737 . . . . 5 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → 𝐴 = dom 𝐹)
87imaeq2d 6009 . . . 4 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐺𝐴) = (𝐺 “ dom 𝐹))
9 dmco 6202 . . . 4 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
108, 9eqtr4di 2784 . . 3 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐺𝐴) = dom (𝐹𝐺))
1110fneq2d 6575 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ↔ (𝐹𝐺) Fn dom (𝐹𝐺)))
124, 11mpbird 257 1 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  ccnv 5615  dom cdm 5616  cima 5619  ccom 5620  Fun wfun 6475   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484
This theorem is referenced by:  fnco  6599  fcof  6674
  Copyright terms: Public domain W3C validator