MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncofn Structured version   Visualization version   GIF version

Theorem fncofn 6603
Description: Composition of a function with domain and a function as a function with domain. Generalization of fnco 6604. (Contributed by AV, 17-Sep-2024.)
Assertion
Ref Expression
fncofn ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))

Proof of Theorem fncofn
StepHypRef Expression
1 fnfun 6586 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funco 6526 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
31, 2sylan 580 . . 3 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → Fun (𝐹𝐺))
43funfnd 6517 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn dom (𝐹𝐺))
5 fndm 6589 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65adantr 480 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → dom 𝐹 = 𝐴)
76eqcomd 2735 . . . . 5 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → 𝐴 = dom 𝐹)
87imaeq2d 6015 . . . 4 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐺𝐴) = (𝐺 “ dom 𝐹))
9 dmco 6207 . . . 4 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
108, 9eqtr4di 2782 . . 3 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐺𝐴) = dom (𝐹𝐺))
1110fneq2d 6580 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ↔ (𝐹𝐺) Fn dom (𝐹𝐺)))
124, 11mpbird 257 1 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  ccnv 5622  dom cdm 5623  cima 5626  ccom 5627  Fun wfun 6480   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489
This theorem is referenced by:  fnco  6604  fcof  6679
  Copyright terms: Public domain W3C validator