Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fncofn | Structured version Visualization version GIF version |
Description: Composition of a function with domain and a function as a function with domain. Generalization of fnco 6549. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fncofn | ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6533 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funco 6474 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
4 | 3 | funfnd 6465 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn dom (𝐹 ∘ 𝐺)) |
5 | fndm 6536 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → dom 𝐹 = 𝐴) |
7 | 6 | eqcomd 2744 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → 𝐴 = dom 𝐹) |
8 | 7 | imaeq2d 5969 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (◡𝐺 “ 𝐴) = (◡𝐺 “ dom 𝐹)) |
9 | dmco 6158 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
10 | 8, 9 | eqtr4di 2796 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (◡𝐺 “ 𝐴) = dom (𝐹 ∘ 𝐺)) |
11 | 10 | fneq2d 6527 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ↔ (𝐹 ∘ 𝐺) Fn dom (𝐹 ∘ 𝐺))) |
12 | 4, 11 | mpbird 256 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ◡ccnv 5588 dom cdm 5589 “ cima 5592 ∘ ccom 5593 Fun wfun 6427 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fnco 6549 fcof 6623 |
Copyright terms: Public domain | W3C validator |