| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fncofn | Structured version Visualization version GIF version | ||
| Description: Composition of a function with domain and a function as a function with domain. Generalization of fnco 6661. (Contributed by AV, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| fncofn | ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6643 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funco 6581 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| 4 | 3 | funfnd 6572 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn dom (𝐹 ∘ 𝐺)) |
| 5 | fndm 6646 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → dom 𝐹 = 𝐴) |
| 7 | 6 | eqcomd 2742 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → 𝐴 = dom 𝐹) |
| 8 | 7 | imaeq2d 6052 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (◡𝐺 “ 𝐴) = (◡𝐺 “ dom 𝐹)) |
| 9 | dmco 6248 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
| 10 | 8, 9 | eqtr4di 2789 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (◡𝐺 “ 𝐴) = dom (𝐹 ∘ 𝐺)) |
| 11 | 10 | fneq2d 6637 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ↔ (𝐹 ∘ 𝐺) Fn dom (𝐹 ∘ 𝐺))) |
| 12 | 4, 11 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5658 dom cdm 5659 “ cima 5662 ∘ ccom 5663 Fun wfun 6530 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 |
| This theorem is referenced by: fnco 6661 fcof 6734 |
| Copyright terms: Public domain | W3C validator |