![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fncofn | Structured version Visualization version GIF version |
Description: Composition of a function with domain and a function as a function with domain. Generalization of fnco 6697. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fncofn | ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6679 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | funco 6618 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
4 | 3 | funfnd 6609 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn dom (𝐹 ∘ 𝐺)) |
5 | fndm 6682 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → dom 𝐹 = 𝐴) |
7 | 6 | eqcomd 2746 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → 𝐴 = dom 𝐹) |
8 | 7 | imaeq2d 6089 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (◡𝐺 “ 𝐴) = (◡𝐺 “ dom 𝐹)) |
9 | dmco 6285 | . . . 4 ⊢ dom (𝐹 ∘ 𝐺) = (◡𝐺 “ dom 𝐹) | |
10 | 8, 9 | eqtr4di 2798 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (◡𝐺 “ 𝐴) = dom (𝐹 ∘ 𝐺)) |
11 | 10 | fneq2d 6673 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ↔ (𝐹 ∘ 𝐺) Fn dom (𝐹 ∘ 𝐺))) |
12 | 4, 11 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ◡ccnv 5699 dom cdm 5700 “ cima 5703 ∘ ccom 5704 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fnco 6697 fcof 6770 |
Copyright terms: Public domain | W3C validator |