![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnund | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
fnund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnund.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
fnund.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
fnund | ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnund.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | fnund.3 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fnun 6683 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
5 | 1, 2, 3, 4 | syl21anc 838 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-fun 6565 df-fn 6566 |
This theorem is referenced by: fnunop 6685 brwdom2 9611 sseqfn 34372 bnj927 34762 metakunt19 42205 metakunt25 42211 ofun 42256 tfsconcatfn 43328 |
Copyright terms: Public domain | W3C validator |