MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnund Structured version   Visualization version   GIF version

Theorem fnund 6491
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fnund.1 (𝜑𝐹 Fn 𝐴)
fnund.2 (𝜑𝐺 Fn 𝐵)
fnund.3 (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fnund (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnund
StepHypRef Expression
1 fnund.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnund.2 . 2 (𝜑𝐺 Fn 𝐵)
3 fnund.3 . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fnun 6490 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
51, 2, 3, 4syl21anc 838 1 (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cun 3864  cin 3865  c0 4237   Fn wfn 6375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-fun 6382  df-fn 6383
This theorem is referenced by:  fnunop  6492  brwdom2  9189  sseqfn  32069  bnj927  32461  metakunt19  39865  metakunt25  39871  ofun  39924
  Copyright terms: Public domain W3C validator