MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnund Structured version   Visualization version   GIF version

Theorem fnund 6601
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fnund.1 (𝜑𝐹 Fn 𝐴)
fnund.2 (𝜑𝐺 Fn 𝐵)
fnund.3 (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fnund (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnund
StepHypRef Expression
1 fnund.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnund.2 . 2 (𝜑𝐺 Fn 𝐵)
3 fnund.3 . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fnun 6600 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
51, 2, 3, 4syl21anc 837 1 (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3903  cin 3904  c0 4286   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-fun 6488  df-fn 6489
This theorem is referenced by:  fnunop  6602  brwdom2  9484  sseqfn  34357  bnj927  34735  ofun  42209  tfsconcatfn  43311
  Copyright terms: Public domain W3C validator