MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnund Structured version   Visualization version   GIF version

Theorem fnund 6661
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fnund.1 (𝜑𝐹 Fn 𝐴)
fnund.2 (𝜑𝐺 Fn 𝐵)
fnund.3 (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fnund (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnund
StepHypRef Expression
1 fnund.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnund.2 . 2 (𝜑𝐺 Fn 𝐵)
3 fnund.3 . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fnun 6660 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
51, 2, 3, 4syl21anc 836 1 (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3945  cin 3946  c0 4321   Fn wfn 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-fun 6542  df-fn 6543
This theorem is referenced by:  fnunop  6662  brwdom2  9564  sseqfn  33377  bnj927  33768  metakunt19  40991  metakunt25  40997  ofun  41055  tfsconcatfn  42073
  Copyright terms: Public domain W3C validator