Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnund | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
fnund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnund.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
fnund.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
fnund | ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnund.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | fnund.3 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fnun 6529 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
5 | 1, 2, 3, 4 | syl21anc 834 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fnunop 6531 brwdom2 9262 sseqfn 32257 bnj927 32649 metakunt19 40071 metakunt25 40077 ofun 40137 |
Copyright terms: Public domain | W3C validator |