| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnund | Structured version Visualization version GIF version | ||
| Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| Ref | Expression |
|---|---|
| fnund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnund.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| fnund.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| fnund | ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnund.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | fnund.3 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fnun 6632 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl21anc 837 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnunop 6634 brwdom2 9526 sseqfn 34381 bnj927 34759 ofun 42224 tfsconcatfn 43327 |
| Copyright terms: Public domain | W3C validator |