MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnund Structured version   Visualization version   GIF version

Theorem fnund 6596
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fnund.1 (𝜑𝐹 Fn 𝐴)
fnund.2 (𝜑𝐺 Fn 𝐵)
fnund.3 (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fnund (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnund
StepHypRef Expression
1 fnund.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnund.2 . 2 (𝜑𝐺 Fn 𝐵)
3 fnund.3 . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fnun 6595 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
51, 2, 3, 4syl21anc 837 1 (𝜑 → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3900  cin 3901  c0 4283   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-fun 6483  df-fn 6484
This theorem is referenced by:  fnunop  6597  brwdom2  9459  sseqfn  34398  bnj927  34776  ofun  42268  tfsconcatfn  43370
  Copyright terms: Public domain W3C validator