Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnund | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
fnund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnund.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
fnund.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
fnund | ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnund.2 | . 2 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | fnund.3 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fnun 6490 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
5 | 1, 2, 3, 4 | syl21anc 838 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∪ cun 3864 ∩ cin 3865 ∅c0 4237 Fn wfn 6375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-fun 6382 df-fn 6383 |
This theorem is referenced by: fnunop 6492 brwdom2 9189 sseqfn 32069 bnj927 32461 metakunt19 39865 metakunt25 39871 ofun 39924 |
Copyright terms: Public domain | W3C validator |