![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsng | Structured version Visualization version GIF version |
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
fnsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6553 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) | |
2 | dmsnopg 6166 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
3 | 2 | adantl 483 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom {⟨𝐴, 𝐵⟩} = {𝐴}) |
4 | df-fn 6500 | . 2 ⊢ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ↔ (Fun {⟨𝐴, 𝐵⟩} ∧ dom {⟨𝐴, 𝐵⟩} = {𝐴})) | |
5 | 1, 3, 4 | sylanbrc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4587 ⟨cop 4593 dom cdm 5634 Fun wfun 6491 Fn wfn 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-fun 6499 df-fn 6500 |
This theorem is referenced by: fnsn 6560 fnunop 6617 fvsnun2 7130 fsnunfv 7134 mat1dimscm 21840 m1detdiag 21962 noextenddif 27032 noextendlt 27033 noextendgt 27034 actfunsnf1o 33274 actfunsnrndisj 33275 breprexplema 33300 sticksstones11 40610 metakunt19 40641 fnsnbt 40703 |
Copyright terms: Public domain | W3C validator |