| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsng | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6539 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | dmsnopg 6167 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| 4 | df-fn 6491 | . 2 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} ↔ (Fun {〈𝐴, 𝐵〉} ∧ dom {〈𝐴, 𝐵〉} = {𝐴})) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 〈cop 4583 dom cdm 5621 Fun wfun 6482 Fn wfn 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6490 df-fn 6491 |
| This theorem is referenced by: fnsn 6546 fnunop 6604 fnsnbg 7106 fvsnun2 7125 fsnunfv 7129 mat1dimscm 22393 m1detdiag 22515 noextenddif 27610 noextendlt 27611 noextendgt 27612 actfunsnf1o 34640 actfunsnrndisj 34641 breprexplema 34666 sticksstones11 42272 |
| Copyright terms: Public domain | W3C validator |