MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsng Structured version   Visualization version   GIF version

Theorem fnsng 6568
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fnsng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})

Proof of Theorem fnsng
StepHypRef Expression
1 funsng 6567 . 2 ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
2 dmsnopg 6186 . . 3 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
32adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → dom {⟨𝐴, 𝐵⟩} = {𝐴})
4 df-fn 6514 . 2 ({⟨𝐴, 𝐵⟩} Fn {𝐴} ↔ (Fun {⟨𝐴, 𝐵⟩} ∧ dom {⟨𝐴, 𝐵⟩} = {𝐴}))
51, 3, 4sylanbrc 583 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cop 4595  dom cdm 5638  Fun wfun 6505   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513  df-fn 6514
This theorem is referenced by:  fnsn  6574  fnunop  6634  fnsnbg  7138  fvsnun2  7157  fsnunfv  7161  mat1dimscm  22362  m1detdiag  22484  noextenddif  27580  noextendlt  27581  noextendgt  27582  actfunsnf1o  34595  actfunsnrndisj  34596  breprexplema  34621  sticksstones11  42144
  Copyright terms: Public domain W3C validator