MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsng Structured version   Visualization version   GIF version

Theorem fnsng 6533
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fnsng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})

Proof of Theorem fnsng
StepHypRef Expression
1 funsng 6532 . 2 ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
2 dmsnopg 6160 . . 3 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
32adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → dom {⟨𝐴, 𝐵⟩} = {𝐴})
4 df-fn 6484 . 2 ({⟨𝐴, 𝐵⟩} Fn {𝐴} ↔ (Fun {⟨𝐴, 𝐵⟩} ∧ dom {⟨𝐴, 𝐵⟩} = {𝐴}))
51, 3, 4sylanbrc 583 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4576  cop 4582  dom cdm 5616  Fun wfun 6475   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-fun 6483  df-fn 6484
This theorem is referenced by:  fnsn  6539  fnunop  6597  fnsnbg  7098  fvsnun2  7117  fsnunfv  7121  mat1dimscm  22391  m1detdiag  22513  noextenddif  27608  noextendlt  27609  noextendgt  27610  actfunsnf1o  34615  actfunsnrndisj  34616  breprexplema  34641  sticksstones11  42195
  Copyright terms: Public domain W3C validator