Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnsng | Structured version Visualization version GIF version |
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
fnsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6485 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
2 | dmsnopg 6116 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
3 | 2 | adantl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom {〈𝐴, 𝐵〉} = {𝐴}) |
4 | df-fn 6436 | . 2 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} ↔ (Fun {〈𝐴, 𝐵〉} ∧ dom {〈𝐴, 𝐵〉} = {𝐴})) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 〈cop 4567 dom cdm 5589 Fun wfun 6427 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fnsn 6492 fnunop 6547 fvsnun2 7055 fsnunfv 7059 mat1dimscm 21624 m1detdiag 21746 actfunsnf1o 32584 actfunsnrndisj 32585 breprexplema 32610 noextenddif 33871 noextendlt 33872 noextendgt 33873 sticksstones11 40112 metakunt19 40143 fnsnbt 40208 |
Copyright terms: Public domain | W3C validator |