| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > focnvimacdmdm | Structured version Visualization version GIF version | ||
| Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| focnvimacdmdm | ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn 6775 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
| 2 | 1 | eqcomd 2735 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 = ran 𝐺) |
| 3 | 2 | imaeq2d 6031 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = (◡𝐺 “ ran 𝐺)) |
| 4 | cnvimarndm 6054 | . . 3 ⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 | |
| 5 | 3, 4 | eqtrdi 2780 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = dom 𝐺) |
| 6 | fof 6772 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 7 | 6 | fdmd 6698 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → dom 𝐺 = 𝐴) |
| 8 | 5, 7 | eqtrd 2764 | 1 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fn 6514 df-f 6515 df-fo 6517 |
| This theorem is referenced by: foco 6786 |
| Copyright terms: Public domain | W3C validator |