Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > focnvimacdmdm | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
focnvimacdmdm | ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6728 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
2 | 1 | eqcomd 2742 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 = ran 𝐺) |
3 | 2 | imaeq2d 5986 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = (◡𝐺 “ ran 𝐺)) |
4 | cnvimarndm 6007 | . . 3 ⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 | |
5 | 3, 4 | eqtrdi 2792 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = dom 𝐺) |
6 | fof 6725 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
7 | 6 | fdmd 6648 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → dom 𝐺 = 𝐴) |
8 | 5, 7 | eqtrd 2776 | 1 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5606 dom cdm 5607 ran crn 5608 “ cima 5610 –onto→wfo 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-xp 5613 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-fn 6468 df-f 6469 df-fo 6471 |
This theorem is referenced by: foco 6739 |
Copyright terms: Public domain | W3C validator |