MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focnvimacdmdm Structured version   Visualization version   GIF version

Theorem focnvimacdmdm 6831
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focnvimacdmdm (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)

Proof of Theorem focnvimacdmdm
StepHypRef Expression
1 forn 6822 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
21eqcomd 2742 . . . 4 (𝐺:𝐴onto𝐵𝐵 = ran 𝐺)
32imaeq2d 6077 . . 3 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = (𝐺 “ ran 𝐺))
4 cnvimarndm 6100 . . 3 (𝐺 “ ran 𝐺) = dom 𝐺
53, 4eqtrdi 2792 . 2 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = dom 𝐺)
6 fof 6819 . . 3 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
76fdmd 6745 . 2 (𝐺:𝐴onto𝐵 → dom 𝐺 = 𝐴)
85, 7eqtrd 2776 1 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687  ontowfo 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-fn 6563  df-f 6564  df-fo 6566
This theorem is referenced by:  foco  6833
  Copyright terms: Public domain W3C validator