| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > focnvimacdmdm | Structured version Visualization version GIF version | ||
| Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| focnvimacdmdm | ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn 6734 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
| 2 | 1 | eqcomd 2736 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 = ran 𝐺) |
| 3 | 2 | imaeq2d 6006 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = (◡𝐺 “ ran 𝐺)) |
| 4 | cnvimarndm 6029 | . . 3 ⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 | |
| 5 | 3, 4 | eqtrdi 2781 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = dom 𝐺) |
| 6 | fof 6731 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 7 | 6 | fdmd 6657 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → dom 𝐺 = 𝐴) |
| 8 | 5, 7 | eqtrd 2765 | 1 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 –onto→wfo 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fn 6480 df-f 6481 df-fo 6483 |
| This theorem is referenced by: foco 6745 |
| Copyright terms: Public domain | W3C validator |