Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > focnvimacdmdm | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
focnvimacdmdm | ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6675 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
2 | 1 | eqcomd 2744 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 = ran 𝐺) |
3 | 2 | imaeq2d 5958 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = (◡𝐺 “ ran 𝐺)) |
4 | cnvimarndm 5979 | . . 3 ⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 | |
5 | 3, 4 | eqtrdi 2795 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = dom 𝐺) |
6 | fof 6672 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
7 | 6 | fdmd 6595 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → dom 𝐺 = 𝐴) |
8 | 5, 7 | eqtrd 2778 | 1 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: foco 6686 |
Copyright terms: Public domain | W3C validator |