MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focnvimacdmdm Structured version   Visualization version   GIF version

Theorem focnvimacdmdm 6846
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focnvimacdmdm (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)

Proof of Theorem focnvimacdmdm
StepHypRef Expression
1 forn 6837 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
21eqcomd 2746 . . . 4 (𝐺:𝐴onto𝐵𝐵 = ran 𝐺)
32imaeq2d 6089 . . 3 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = (𝐺 “ ran 𝐺))
4 cnvimarndm 6112 . . 3 (𝐺 “ ran 𝐺) = dom 𝐺
53, 4eqtrdi 2796 . 2 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = dom 𝐺)
6 fof 6834 . . 3 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
76fdmd 6757 . 2 (𝐺:𝐴onto𝐵 → dom 𝐺 = 𝐴)
85, 7eqtrd 2780 1 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fn 6576  df-f 6577  df-fo 6579
This theorem is referenced by:  foco  6848
  Copyright terms: Public domain W3C validator