MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focnvimacdmdm Structured version   Visualization version   GIF version

Theorem focnvimacdmdm 6784
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focnvimacdmdm (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)

Proof of Theorem focnvimacdmdm
StepHypRef Expression
1 forn 6775 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
21eqcomd 2735 . . . 4 (𝐺:𝐴onto𝐵𝐵 = ran 𝐺)
32imaeq2d 6031 . . 3 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = (𝐺 “ ran 𝐺))
4 cnvimarndm 6054 . . 3 (𝐺 “ ran 𝐺) = dom 𝐺
53, 4eqtrdi 2780 . 2 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = dom 𝐺)
6 fof 6772 . . 3 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
76fdmd 6698 . 2 (𝐺:𝐴onto𝐵 → dom 𝐺 = 𝐴)
85, 7eqtrd 2764 1 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fn 6514  df-f 6515  df-fo 6517
This theorem is referenced by:  foco  6786
  Copyright terms: Public domain W3C validator