MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focnvimacdmdm Structured version   Visualization version   GIF version

Theorem focnvimacdmdm 6818
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focnvimacdmdm (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)

Proof of Theorem focnvimacdmdm
StepHypRef Expression
1 forn 6809 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
21eqcomd 2739 . . . 4 (𝐺:𝐴onto𝐵𝐵 = ran 𝐺)
32imaeq2d 6060 . . 3 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = (𝐺 “ ran 𝐺))
4 cnvimarndm 6082 . . 3 (𝐺 “ ran 𝐺) = dom 𝐺
53, 4eqtrdi 2789 . 2 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = dom 𝐺)
6 fof 6806 . . 3 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
76fdmd 6729 . 2 (𝐺:𝐴onto𝐵 → dom 𝐺 = 𝐴)
85, 7eqtrd 2773 1 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ccnv 5676  dom cdm 5677  ran crn 5678  cima 5680  ontowfo 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fn 6547  df-f 6548  df-fo 6550
This theorem is referenced by:  foco  6820
  Copyright terms: Public domain W3C validator