MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focnvimacdmdm Structured version   Visualization version   GIF version

Theorem focnvimacdmdm 6700
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focnvimacdmdm (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)

Proof of Theorem focnvimacdmdm
StepHypRef Expression
1 forn 6691 . . . . 5 (𝐺:𝐴onto𝐵 → ran 𝐺 = 𝐵)
21eqcomd 2744 . . . 4 (𝐺:𝐴onto𝐵𝐵 = ran 𝐺)
32imaeq2d 5969 . . 3 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = (𝐺 “ ran 𝐺))
4 cnvimarndm 5990 . . 3 (𝐺 “ ran 𝐺) = dom 𝐺
53, 4eqtrdi 2794 . 2 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = dom 𝐺)
6 fof 6688 . . 3 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
76fdmd 6611 . 2 (𝐺:𝐴onto𝐵 → dom 𝐺 = 𝐴)
85, 7eqtrd 2778 1 (𝐺:𝐴onto𝐵 → (𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fn 6436  df-f 6437  df-fo 6439
This theorem is referenced by:  foco  6702
  Copyright terms: Public domain W3C validator