![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > focnvimacdmdm | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
focnvimacdmdm | ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6808 | . . . . 5 ⊢ (𝐺:𝐴–onto→𝐵 → ran 𝐺 = 𝐵) | |
2 | 1 | eqcomd 2733 | . . . 4 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐵 = ran 𝐺) |
3 | 2 | imaeq2d 6057 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = (◡𝐺 “ ran 𝐺)) |
4 | cnvimarndm 6080 | . . 3 ⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 | |
5 | 3, 4 | eqtrdi 2783 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = dom 𝐺) |
6 | fof 6805 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
7 | 6 | fdmd 6727 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 → dom 𝐺 = 𝐴) |
8 | 5, 7 | eqtrd 2767 | 1 ⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ◡ccnv 5671 dom cdm 5672 ran crn 5673 “ cima 5675 –onto→wfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fn 6545 df-f 6546 df-fo 6548 |
This theorem is referenced by: foco 6819 |
Copyright terms: Public domain | W3C validator |