| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version | ||
| Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6062 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
| 2 | df-rn 5670 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 3 | 2 | imaeq2i 6050 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
| 4 | dfdm4 5880 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 1, 3, 4 | 3eqtr4i 2769 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: cnvimassrndm 6146 focnvimacdmdm 6807 cnvimainrn 7062 cnrest2 23229 mbfconstlem 25585 i1fima 25636 i1fima2 25637 i1fd 25639 i1f0rn 25640 itg1addlem5 25658 fcoinver 32590 supppreima 32673 sibfof 34377 itg2addnclem 37700 itg2addnclem2 37701 ftc1anclem6 37727 f1cof1blem 47070 f1cof1b 47073 fnfocofob 47075 |
| Copyright terms: Public domain | W3C validator |