| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version | ||
| Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6021 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
| 2 | df-rn 5630 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 3 | 2 | imaeq2i 6009 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
| 4 | dfdm4 5838 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 1, 3, 4 | 3eqtr4i 2762 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: cnvimassrndm 6101 focnvimacdmdm 6748 cnvimainrn 7001 cnrest2 23171 mbfconstlem 25526 i1fima 25577 i1fima2 25578 i1fd 25580 i1f0rn 25581 itg1addlem5 25599 fcoinver 32548 supppreima 32634 sibfof 34314 itg2addnclem 37661 itg2addnclem2 37662 ftc1anclem6 37688 f1cof1blem 47068 f1cof1b 47071 fnfocofob 47073 |
| Copyright terms: Public domain | W3C validator |