MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 5979
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 5968 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5591 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 5956 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5793 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2776 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  cnvimassrndm  6044  focnvimacdmdm  6684  cnvimainrn  6926  cnrest2  22345  mbfconstlem  24696  i1fima  24747  i1fima2  24748  i1fd  24750  i1f0rn  24751  itg1addlem5  24770  fcoinver  30847  supppreima  30927  sibfof  32207  itg2addnclem  35755  itg2addnclem2  35756  ftc1anclem6  35782  f1cof1blem  44455  f1cof1b  44456  fnfocofob  44458
  Copyright terms: Public domain W3C validator