MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6031
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6018 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5625 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6006 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5834 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2764 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  cnvimassrndm  6099  focnvimacdmdm  6747  cnvimainrn  7000  cnrest2  23201  mbfconstlem  25555  i1fima  25606  i1fima2  25607  i1fd  25609  i1f0rn  25610  itg1addlem5  25628  fcoinver  32584  supppreima  32672  sibfof  34353  itg2addnclem  37721  itg2addnclem2  37722  ftc1anclem6  37748  f1cof1blem  47184  f1cof1b  47187  fnfocofob  47189
  Copyright terms: Public domain W3C validator