MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6103
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6090 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5700 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6078 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5909 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2773 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  cnvimassrndm  6174  focnvimacdmdm  6833  cnvimainrn  7087  cnrest2  23310  mbfconstlem  25676  i1fima  25727  i1fima2  25728  i1fd  25730  i1f0rn  25731  itg1addlem5  25750  fcoinver  32624  supppreima  32706  sibfof  34322  itg2addnclem  37658  itg2addnclem2  37659  ftc1anclem6  37685  f1cof1blem  47024  f1cof1b  47027  fnfocofob  47029
  Copyright terms: Public domain W3C validator