MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6034
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6021 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5630 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6009 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5838 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2762 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  cnvimassrndm  6101  focnvimacdmdm  6748  cnvimainrn  7001  cnrest2  23171  mbfconstlem  25526  i1fima  25577  i1fima2  25578  i1fd  25580  i1f0rn  25581  itg1addlem5  25599  fcoinver  32548  supppreima  32634  sibfof  34314  itg2addnclem  37661  itg2addnclem2  37662  ftc1anclem6  37688  f1cof1blem  47068  f1cof1b  47071  fnfocofob  47073
  Copyright terms: Public domain W3C validator