Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version |
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5968 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
2 | df-rn 5591 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
3 | 2 | imaeq2i 5956 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
4 | dfdm4 5793 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 1, 3, 4 | 3eqtr4i 2776 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: cnvimassrndm 6044 focnvimacdmdm 6684 cnvimainrn 6926 cnrest2 22345 mbfconstlem 24696 i1fima 24747 i1fima2 24748 i1fd 24750 i1f0rn 24751 itg1addlem5 24770 fcoinver 30847 supppreima 30927 sibfof 32207 itg2addnclem 35755 itg2addnclem2 35756 ftc1anclem6 35782 f1cof1blem 44455 f1cof1b 44456 fnfocofob 44458 |
Copyright terms: Public domain | W3C validator |