Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version |
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5997 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
2 | df-rn 5619 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
3 | 2 | imaeq2i 5985 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
4 | dfdm4 5825 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 1, 3, 4 | 3eqtr4i 2775 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ◡ccnv 5607 dom cdm 5608 ran crn 5609 “ cima 5611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5614 df-cnv 5616 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 |
This theorem is referenced by: cnvimassrndm 6078 focnvimacdmdm 6738 cnvimainrn 6984 cnrest2 22520 mbfconstlem 24874 i1fima 24925 i1fima2 24926 i1fd 24928 i1f0rn 24929 itg1addlem5 24948 fcoinver 31081 supppreima 31160 sibfof 32447 itg2addnclem 35900 itg2addnclem2 35901 ftc1anclem6 35927 f1cof1blem 44833 f1cof1b 44834 fnfocofob 44836 |
Copyright terms: Public domain | W3C validator |