| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version | ||
| Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6041 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
| 2 | df-rn 5649 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 3 | 2 | imaeq2i 6029 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
| 4 | dfdm4 5859 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 1, 3, 4 | 3eqtr4i 2762 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: cnvimassrndm 6125 focnvimacdmdm 6784 cnvimainrn 7039 cnrest2 23173 mbfconstlem 25528 i1fima 25579 i1fima2 25580 i1fd 25582 i1f0rn 25583 itg1addlem5 25601 fcoinver 32533 supppreima 32614 sibfof 34331 itg2addnclem 37665 itg2addnclem2 37666 ftc1anclem6 37692 f1cof1blem 47075 f1cof1b 47078 fnfocofob 47080 |
| Copyright terms: Public domain | W3C validator |