MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6112
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6099 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5711 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6087 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5920 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2778 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  cnvimassrndm  6183  focnvimacdmdm  6846  cnvimainrn  7100  cnrest2  23315  mbfconstlem  25681  i1fima  25732  i1fima2  25733  i1fd  25735  i1f0rn  25736  itg1addlem5  25755  fcoinver  32626  supppreima  32703  sibfof  34305  itg2addnclem  37631  itg2addnclem2  37632  ftc1anclem6  37658  f1cof1blem  46989  f1cof1b  46992  fnfocofob  46994
  Copyright terms: Public domain W3C validator