| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version | ||
| Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6044 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
| 2 | df-rn 5652 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 3 | 2 | imaeq2i 6032 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
| 4 | dfdm4 5862 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 1, 3, 4 | 3eqtr4i 2763 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: cnvimassrndm 6128 focnvimacdmdm 6787 cnvimainrn 7042 cnrest2 23180 mbfconstlem 25535 i1fima 25586 i1fima2 25587 i1fd 25589 i1f0rn 25590 itg1addlem5 25608 fcoinver 32540 supppreima 32621 sibfof 34338 itg2addnclem 37672 itg2addnclem2 37673 ftc1anclem6 37699 f1cof1blem 47079 f1cof1b 47082 fnfocofob 47084 |
| Copyright terms: Public domain | W3C validator |