![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version |
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 6090 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
2 | df-rn 5700 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
3 | 2 | imaeq2i 6078 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
4 | dfdm4 5909 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 1, 3, 4 | 3eqtr4i 2773 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: cnvimassrndm 6174 focnvimacdmdm 6833 cnvimainrn 7087 cnrest2 23310 mbfconstlem 25676 i1fima 25727 i1fima2 25728 i1fd 25730 i1f0rn 25731 itg1addlem5 25750 fcoinver 32624 supppreima 32706 sibfof 34322 itg2addnclem 37658 itg2addnclem2 37659 ftc1anclem6 37685 f1cof1blem 47024 f1cof1b 47027 fnfocofob 47029 |
Copyright terms: Public domain | W3C validator |