MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6081
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6069 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5687 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6057 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5895 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2770 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ccnv 5675  dom cdm 5676  ran crn 5677  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  cnvimassrndm  6151  focnvimacdmdm  6817  cnvimainrn  7068  cnrest2  22789  mbfconstlem  25143  i1fima  25194  i1fima2  25195  i1fd  25197  i1f0rn  25198  itg1addlem5  25217  fcoinver  31830  supppreima  31908  sibfof  33334  itg2addnclem  36534  itg2addnclem2  36535  ftc1anclem6  36561  f1cof1blem  45774  f1cof1b  45775  fnfocofob  45777
  Copyright terms: Public domain W3C validator