| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version | ||
| Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6018 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
| 2 | df-rn 5625 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 3 | 2 | imaeq2i 6006 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
| 4 | dfdm4 5834 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 1, 3, 4 | 3eqtr4i 2764 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: cnvimassrndm 6099 focnvimacdmdm 6747 cnvimainrn 7000 cnrest2 23201 mbfconstlem 25555 i1fima 25606 i1fima2 25607 i1fd 25609 i1f0rn 25610 itg1addlem5 25628 fcoinver 32584 supppreima 32672 sibfof 34353 itg2addnclem 37721 itg2addnclem2 37722 ftc1anclem6 37748 f1cof1blem 47184 f1cof1b 47187 fnfocofob 47189 |
| Copyright terms: Public domain | W3C validator |