MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 5990
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 5979 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5600 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 5967 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5804 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2776 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  cnvimassrndm  6055  focnvimacdmdm  6700  cnvimainrn  6944  cnrest2  22437  mbfconstlem  24791  i1fima  24842  i1fima2  24843  i1fd  24845  i1f0rn  24846  itg1addlem5  24865  fcoinver  30946  supppreima  31025  sibfof  32307  itg2addnclem  35828  itg2addnclem2  35829  ftc1anclem6  35855  f1cof1blem  44568  f1cof1b  44569  fnfocofob  44571
  Copyright terms: Public domain W3C validator