Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimarndm | Structured version Visualization version GIF version |
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
cnvimarndm | ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5979 | . 2 ⊢ (◡𝐴 “ dom ◡𝐴) = ran ◡𝐴 | |
2 | df-rn 5600 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
3 | 2 | imaeq2i 5967 | . 2 ⊢ (◡𝐴 “ ran 𝐴) = (◡𝐴 “ dom ◡𝐴) |
4 | dfdm4 5804 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 1, 3, 4 | 3eqtr4i 2776 | 1 ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ◡ccnv 5588 dom cdm 5589 ran crn 5590 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: cnvimassrndm 6055 focnvimacdmdm 6700 cnvimainrn 6944 cnrest2 22437 mbfconstlem 24791 i1fima 24842 i1fima2 24843 i1fd 24845 i1f0rn 24846 itg1addlem5 24865 fcoinver 30946 supppreima 31025 sibfof 32307 itg2addnclem 35828 itg2addnclem2 35829 ftc1anclem6 35855 f1cof1blem 44568 f1cof1b 44569 fnfocofob 44571 |
Copyright terms: Public domain | W3C validator |