MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6043
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6030 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5642 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6018 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5849 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2762 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  cnvimassrndm  6113  focnvimacdmdm  6766  cnvimainrn  7021  cnrest2  23206  mbfconstlem  25561  i1fima  25612  i1fima2  25613  i1fd  25615  i1f0rn  25616  itg1addlem5  25634  fcoinver  32583  supppreima  32664  sibfof  34324  itg2addnclem  37658  itg2addnclem2  37659  ftc1anclem6  37685  f1cof1blem  47068  f1cof1b  47071  fnfocofob  47073
  Copyright terms: Public domain W3C validator