MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimarndm Structured version   Visualization version   GIF version

Theorem cnvimarndm 6100
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 6087 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 5695 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 6075 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 5905 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2774 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697
This theorem is referenced by:  cnvimassrndm  6171  focnvimacdmdm  6831  cnvimainrn  7086  cnrest2  23295  mbfconstlem  25663  i1fima  25714  i1fima2  25715  i1fd  25717  i1f0rn  25718  itg1addlem5  25736  fcoinver  32618  supppreima  32701  sibfof  34343  itg2addnclem  37679  itg2addnclem2  37680  ftc1anclem6  37706  f1cof1blem  47091  f1cof1b  47094  fnfocofob  47096
  Copyright terms: Public domain W3C validator