MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfoALT Structured version   Visualization version   GIF version

Theorem fimadmfoALT 6830
Description: Alternate proof of fimadmfo 6828, based on fores 6829. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fimadmfoALT (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))

Proof of Theorem fimadmfoALT
StepHypRef Expression
1 fdm 6744 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 frel 6740 . . . . 5 (𝐹:𝐴𝐵 → Rel 𝐹)
3 resdm 6043 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
43eqcomd 2742 . . . . 5 (Rel 𝐹𝐹 = (𝐹 ↾ dom 𝐹))
52, 4syl 17 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝐹 ↾ dom 𝐹))
6 reseq2 5991 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹𝐴))
75, 6sylan9eq 2796 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹𝐴))
81, 7mpdan 687 . 2 (𝐹:𝐴𝐵𝐹 = (𝐹𝐴))
9 ffun 6738 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
10 eqimss2 4042 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
111, 10syl 17 . . . . . 6 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
129, 11jca 511 . . . . 5 (𝐹:𝐴𝐵 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312adantr 480 . . . 4 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
14 fores 6829 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
1513, 14syl 17 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
16 foeq1 6815 . . . 4 (𝐹 = (𝐹𝐴) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1716adantl 481 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1815, 17mpbird 257 . 2 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → 𝐹:𝐴onto→(𝐹𝐴))
198, 18mpdan 687 1 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wss 3950  dom cdm 5684  cres 5686  cima 5687  Rel wrel 5689  Fun wfun 6554  wf 6556  ontowfo 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator