Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimadmfoALT | Structured version Visualization version GIF version |
Description: Alternate proof of fimadmfo 6681, based on fores 6682. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fimadmfoALT | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6593 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | frel 6589 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
3 | resdm 5925 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
4 | 3 | eqcomd 2744 | . . . . 5 ⊢ (Rel 𝐹 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
6 | reseq2 5875 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ 𝐴)) | |
7 | 5, 6 | sylan9eq 2799 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹 ↾ 𝐴)) |
8 | 1, 7 | mpdan 683 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ 𝐴)) |
9 | ffun 6587 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
10 | eqimss2 3974 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
12 | 9, 11 | jca 511 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
14 | fores 6682 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
16 | foeq1 6668 | . . . 4 ⊢ (𝐹 = (𝐹 ↾ 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) | |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) |
18 | 15, 17 | mpbird 256 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
19 | 8, 18 | mpdan 683 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ⊆ wss 3883 dom cdm 5580 ↾ cres 5582 “ cima 5583 Rel wrel 5585 Fun wfun 6412 ⟶wf 6414 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |