Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimadmfoALT | Structured version Visualization version GIF version |
Description: Alternate proof of fimadmfo 6695, based on fores 6696. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fimadmfoALT | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6607 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | frel 6603 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
3 | resdm 5935 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
4 | 3 | eqcomd 2746 | . . . . 5 ⊢ (Rel 𝐹 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
6 | reseq2 5885 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ 𝐴)) | |
7 | 5, 6 | sylan9eq 2800 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹 ↾ 𝐴)) |
8 | 1, 7 | mpdan 684 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ 𝐴)) |
9 | ffun 6601 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
10 | eqimss2 3983 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
12 | 9, 11 | jca 512 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
14 | fores 6696 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
16 | foeq1 6682 | . . . 4 ⊢ (𝐹 = (𝐹 ↾ 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) | |
17 | 16 | adantl 482 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) |
18 | 15, 17 | mpbird 256 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
19 | 8, 18 | mpdan 684 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ⊆ wss 3892 dom cdm 5590 ↾ cres 5592 “ cima 5593 Rel wrel 5595 Fun wfun 6426 ⟶wf 6428 –onto→wfo 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 df-fo 6438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |