MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfoALT Structured version   Visualization version   GIF version

Theorem fimadmfoALT 6741
Description: Alternate proof of fimadmfo 6739, based on fores 6740. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fimadmfoALT (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))

Proof of Theorem fimadmfoALT
StepHypRef Expression
1 fdm 6655 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 frel 6651 . . . . 5 (𝐹:𝐴𝐵 → Rel 𝐹)
3 resdm 5970 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
43eqcomd 2737 . . . . 5 (Rel 𝐹𝐹 = (𝐹 ↾ dom 𝐹))
52, 4syl 17 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝐹 ↾ dom 𝐹))
6 reseq2 5918 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹𝐴))
75, 6sylan9eq 2786 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹𝐴))
81, 7mpdan 687 . 2 (𝐹:𝐴𝐵𝐹 = (𝐹𝐴))
9 ffun 6649 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
10 eqimss2 3989 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
111, 10syl 17 . . . . . 6 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
129, 11jca 511 . . . . 5 (𝐹:𝐴𝐵 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312adantr 480 . . . 4 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
14 fores 6740 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
1513, 14syl 17 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
16 foeq1 6726 . . . 4 (𝐹 = (𝐹𝐴) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1716adantl 481 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1815, 17mpbird 257 . 2 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → 𝐹:𝐴onto→(𝐹𝐴))
198, 18mpdan 687 1 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wss 3897  dom cdm 5611  cres 5613  cima 5614  Rel wrel 5616  Fun wfun 6470  wf 6472  ontowfo 6474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator