MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfoALT Structured version   Visualization version   GIF version

Theorem fimadmfoALT 6816
Description: Alternate proof of fimadmfo 6814, based on fores 6815. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fimadmfoALT (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))

Proof of Theorem fimadmfoALT
StepHypRef Expression
1 fdm 6726 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 frel 6722 . . . . 5 (𝐹:𝐴𝐵 → Rel 𝐹)
3 resdm 6026 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
43eqcomd 2738 . . . . 5 (Rel 𝐹𝐹 = (𝐹 ↾ dom 𝐹))
52, 4syl 17 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝐹 ↾ dom 𝐹))
6 reseq2 5976 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹𝐴))
75, 6sylan9eq 2792 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹𝐴))
81, 7mpdan 685 . 2 (𝐹:𝐴𝐵𝐹 = (𝐹𝐴))
9 ffun 6720 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
10 eqimss2 4041 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
111, 10syl 17 . . . . . 6 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
129, 11jca 512 . . . . 5 (𝐹:𝐴𝐵 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312adantr 481 . . . 4 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
14 fores 6815 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
1513, 14syl 17 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
16 foeq1 6801 . . . 4 (𝐹 = (𝐹𝐴) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1716adantl 482 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1815, 17mpbird 256 . 2 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → 𝐹:𝐴onto→(𝐹𝐴))
198, 18mpdan 685 1 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wss 3948  dom cdm 5676  cres 5678  cima 5679  Rel wrel 5681  Fun wfun 6537  wf 6539  ontowfo 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator