![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimadmfoALT | Structured version Visualization version GIF version |
Description: Alternate proof of fimadmfo 6433, based on fores 6434. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fimadmfoALT | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6357 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | frel 6354 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
3 | resdm 5747 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
4 | 3 | eqcomd 2786 | . . . . 5 ⊢ (Rel 𝐹 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
6 | reseq2 5695 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ 𝐴)) | |
7 | 5, 6 | sylan9eq 2836 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹 ↾ 𝐴)) |
8 | 1, 7 | mpdan 675 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ 𝐴)) |
9 | ffun 6352 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
10 | eqimss2 3916 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
12 | 9, 11 | jca 504 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
13 | 12 | adantr 473 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
14 | fores 6434 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
16 | foeq1 6420 | . . . 4 ⊢ (𝐹 = (𝐹 ↾ 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) | |
17 | 16 | adantl 474 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) |
18 | 15, 17 | mpbird 249 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
19 | 8, 18 | mpdan 675 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ⊆ wss 3831 dom cdm 5411 ↾ cres 5413 “ cima 5414 Rel wrel 5416 Fun wfun 6187 ⟶wf 6189 –onto→wfo 6191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pr 5190 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-br 4935 df-opab 4997 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-fun 6195 df-fn 6196 df-f 6197 df-fo 6199 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |