![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimadmfoALT | Structured version Visualization version GIF version |
Description: Alternate proof of fimadmfo 6814, based on fores 6815. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fimadmfoALT | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6726 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | frel 6722 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
3 | resdm 6026 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
4 | 3 | eqcomd 2738 | . . . . 5 ⊢ (Rel 𝐹 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
6 | reseq2 5976 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ 𝐴)) | |
7 | 5, 6 | sylan9eq 2792 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹 ↾ 𝐴)) |
8 | 1, 7 | mpdan 685 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = (𝐹 ↾ 𝐴)) |
9 | ffun 6720 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
10 | eqimss2 4041 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
12 | 9, 11 | jca 512 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
14 | fores 6815 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
16 | foeq1 6801 | . . . 4 ⊢ (𝐹 = (𝐹 ↾ 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) | |
17 | 16 | adantl 482 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴))) |
18 | 15, 17 | mpbird 256 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹 = (𝐹 ↾ 𝐴)) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
19 | 8, 18 | mpdan 685 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ⊆ wss 3948 dom cdm 5676 ↾ cres 5678 “ cima 5679 Rel wrel 5681 Fun wfun 6537 ⟶wf 6539 –onto→wfo 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |