MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfoALT Structured version   Visualization version   GIF version

Theorem fimadmfoALT 6435
Description: Alternate proof of fimadmfo 6433, based on fores 6434. A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fimadmfoALT (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))

Proof of Theorem fimadmfoALT
StepHypRef Expression
1 fdm 6357 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 frel 6354 . . . . 5 (𝐹:𝐴𝐵 → Rel 𝐹)
3 resdm 5747 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
43eqcomd 2786 . . . . 5 (Rel 𝐹𝐹 = (𝐹 ↾ dom 𝐹))
52, 4syl 17 . . . 4 (𝐹:𝐴𝐵𝐹 = (𝐹 ↾ dom 𝐹))
6 reseq2 5695 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ↾ dom 𝐹) = (𝐹𝐴))
75, 6sylan9eq 2836 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 = (𝐹𝐴))
81, 7mpdan 675 . 2 (𝐹:𝐴𝐵𝐹 = (𝐹𝐴))
9 ffun 6352 . . . . . 6 (𝐹:𝐴𝐵 → Fun 𝐹)
10 eqimss2 3916 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
111, 10syl 17 . . . . . 6 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
129, 11jca 504 . . . . 5 (𝐹:𝐴𝐵 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312adantr 473 . . . 4 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
14 fores 6434 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
1513, 14syl 17 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
16 foeq1 6420 . . . 4 (𝐹 = (𝐹𝐴) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1716adantl 474 . . 3 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → (𝐹:𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto→(𝐹𝐴)))
1815, 17mpbird 249 . 2 ((𝐹:𝐴𝐵𝐹 = (𝐹𝐴)) → 𝐹:𝐴onto→(𝐹𝐴))
198, 18mpdan 675 1 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wss 3831  dom cdm 5411  cres 5413  cima 5414  Rel wrel 5416  Fun wfun 6187  wf 6189  ontowfo 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-br 4935  df-opab 4997  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-fun 6195  df-fn 6196  df-f 6197  df-fo 6199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator