| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres2 | Structured version Visualization version GIF version | ||
| Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.) |
| Ref | Expression |
|---|---|
| fssres2 | ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssres 6684 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵) | |
| 2 | resabs1 5950 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → ((𝐹 ↾ 𝐴) ↾ 𝐶) = (𝐹 ↾ 𝐶)) | |
| 3 | 2 | feq1d 6628 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊆ wss 3897 ↾ cres 5613 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: efcvx 26381 filnetlem4 36415 |
| Copyright terms: Public domain | W3C validator |