![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres2 | Structured version Visualization version GIF version |
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
fssres2 | ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssres 6373 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵) | |
2 | resabs1 5728 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → ((𝐹 ↾ 𝐴) ↾ 𝐶) = (𝐹 ↾ 𝐶)) | |
3 | 2 | feq1d 6329 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
4 | 3 | adantl 474 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
5 | 1, 4 | mpbid 224 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ⊆ wss 3829 ↾ cres 5409 ⟶wf 6184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-fun 6190 df-fn 6191 df-f 6192 |
This theorem is referenced by: efcvx 24740 filnetlem4 33256 |
Copyright terms: Public domain | W3C validator |