MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssres2 Structured version   Visualization version   GIF version

Theorem fssres2 6728
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
fssres2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)

Proof of Theorem fssres2
StepHypRef Expression
1 fssres 6726 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → ((𝐹𝐴) ↾ 𝐶):𝐶𝐵)
2 resabs1 5977 . . . 4 (𝐶𝐴 → ((𝐹𝐴) ↾ 𝐶) = (𝐹𝐶))
32feq1d 6670 . . 3 (𝐶𝐴 → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
43adantl 481 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
51, 4mpbid 232 1 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wss 3914  cres 5640  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  efcvx  26359  filnetlem4  36369
  Copyright terms: Public domain W3C validator