![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fresin | Structured version Visualization version GIF version |
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
fresin | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4258 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝐴 | |
2 | fssres 6787 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∩ 𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) |
4 | resres 6022 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴 ∩ 𝑋)) | |
5 | ffn 6747 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
6 | fnresdm 6699 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝐴) = 𝐹) |
8 | 7 | reseq1d 6008 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ 𝑋)) |
9 | 4, 8 | eqtr3id 2794 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)) = (𝐹 ↾ 𝑋)) |
10 | 9 | feq1d 6732 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵 ↔ (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵)) |
11 | 3, 10 | mpbid 232 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3975 ⊆ wss 3976 ↾ cres 5702 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: o1res 15606 limcresi 25940 dvreslem 25964 dvres2lem 25965 noreson 27723 mbfresfi 37626 ofoafg 43316 limcresiooub 45563 limcresioolb 45564 limcleqr 45565 limclner 45572 mbfres2cn 45879 fouriersw 46152 sge0less 46313 sge0ssre 46318 smfres 46711 |
Copyright terms: Public domain | W3C validator |