MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresin Structured version   Visualization version   GIF version

Theorem fresin 6639
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)

Proof of Theorem fresin
StepHypRef Expression
1 inss1 4167 . . 3 (𝐴𝑋) ⊆ 𝐴
2 fssres 6636 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐴𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
31, 2mpan2 687 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
4 resres 5901 . . . 4 ((𝐹𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴𝑋))
5 ffn 6596 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnresdm 6547 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
75, 6syl 17 . . . . 5 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
87reseq1d 5887 . . . 4 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ 𝑋) = (𝐹𝑋))
94, 8eqtr3id 2793 . . 3 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)) = (𝐹𝑋))
109feq1d 6581 . 2 (𝐹:𝐴𝐵 → ((𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵 ↔ (𝐹𝑋):(𝐴𝑋)⟶𝐵))
113, 10mpbid 231 1 (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3890  wss 3891  cres 5590   Fn wfn 6425  wf 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-fun 6432  df-fn 6433  df-f 6434
This theorem is referenced by:  o1res  15250  limcresi  25030  dvreslem  25054  dvres2lem  25055  noreson  33842  mbfresfi  35802  limcresiooub  43137  limcresioolb  43138  limcleqr  43139  limclner  43146  mbfres2cn  43453  fouriersw  43726  sge0less  43884  sge0ssre  43889  smfres  44275
  Copyright terms: Public domain W3C validator