MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresin Structured version   Visualization version   GIF version

Theorem fresin 6692
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)

Proof of Theorem fresin
StepHypRef Expression
1 inss1 4187 . . 3 (𝐴𝑋) ⊆ 𝐴
2 fssres 6689 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐴𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
31, 2mpan2 691 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
4 resres 5941 . . . 4 ((𝐹𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴𝑋))
5 ffn 6651 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnresdm 6600 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
75, 6syl 17 . . . . 5 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
87reseq1d 5927 . . . 4 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ 𝑋) = (𝐹𝑋))
94, 8eqtr3id 2780 . . 3 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)) = (𝐹𝑋))
109feq1d 6633 . 2 (𝐹:𝐴𝐵 → ((𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵 ↔ (𝐹𝑋):(𝐴𝑋)⟶𝐵))
113, 10mpbid 232 1 (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3901  wss 3902  cres 5618   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  o1res  15467  limcresi  25814  dvreslem  25838  dvres2lem  25839  noreson  27600  mbfresfi  37712  ofoafg  43393  limcresiooub  45686  limcresioolb  45687  limcleqr  45688  limclner  45695  mbfres2cn  46002  fouriersw  46275  sge0less  46436  sge0ssre  46441  smfres  46834
  Copyright terms: Public domain W3C validator