MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresin Structured version   Visualization version   GIF version

Theorem fresin 6729
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)

Proof of Theorem fresin
StepHypRef Expression
1 inss1 4200 . . 3 (𝐴𝑋) ⊆ 𝐴
2 fssres 6726 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐴𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
31, 2mpan2 691 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
4 resres 5963 . . . 4 ((𝐹𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴𝑋))
5 ffn 6688 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnresdm 6637 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
75, 6syl 17 . . . . 5 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
87reseq1d 5949 . . . 4 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ 𝑋) = (𝐹𝑋))
94, 8eqtr3id 2778 . . 3 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)) = (𝐹𝑋))
109feq1d 6670 . 2 (𝐹:𝐴𝐵 → ((𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵 ↔ (𝐹𝑋):(𝐴𝑋)⟶𝐵))
113, 10mpbid 232 1 (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  wss 3914  cres 5640   Fn wfn 6506  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  o1res  15526  limcresi  25786  dvreslem  25810  dvres2lem  25811  noreson  27572  mbfresfi  37660  ofoafg  43343  limcresiooub  45640  limcresioolb  45641  limcleqr  45642  limclner  45649  mbfres2cn  45956  fouriersw  46229  sge0less  46390  sge0ssre  46395  smfres  46788
  Copyright terms: Public domain W3C validator