| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fresin | Structured version Visualization version GIF version | ||
| Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| fresin | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝐴 | |
| 2 | fssres 6729 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∩ 𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) |
| 4 | resres 5966 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴 ∩ 𝑋)) | |
| 5 | ffn 6691 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 6 | fnresdm 6640 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝐴) = 𝐹) |
| 8 | 7 | reseq1d 5952 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ 𝑋)) |
| 9 | 4, 8 | eqtr3id 2779 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)) = (𝐹 ↾ 𝑋)) |
| 10 | 9 | feq1d 6673 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵 ↔ (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵)) |
| 11 | 3, 10 | mpbid 232 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: o1res 15533 limcresi 25793 dvreslem 25817 dvres2lem 25818 noreson 27579 mbfresfi 37667 ofoafg 43350 limcresiooub 45647 limcresioolb 45648 limcleqr 45649 limclner 45656 mbfres2cn 45963 fouriersw 46236 sge0less 46397 sge0ssre 46402 smfres 46795 |
| Copyright terms: Public domain | W3C validator |