| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fresin | Structured version Visualization version GIF version | ||
| Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| fresin | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4217 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝐴 | |
| 2 | fssres 6754 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∩ 𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) |
| 4 | resres 5990 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴 ∩ 𝑋)) | |
| 5 | ffn 6716 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 6 | fnresdm 6667 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝐴) = 𝐹) |
| 8 | 7 | reseq1d 5976 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ 𝑋)) |
| 9 | 4, 8 | eqtr3id 2783 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)) = (𝐹 ↾ 𝑋)) |
| 10 | 9 | feq1d 6700 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵 ↔ (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵)) |
| 11 | 3, 10 | mpbid 232 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∩ cin 3930 ⊆ wss 3931 ↾ cres 5667 Fn wfn 6536 ⟶wf 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-fun 6543 df-fn 6544 df-f 6545 |
| This theorem is referenced by: o1res 15579 limcresi 25857 dvreslem 25881 dvres2lem 25882 noreson 27642 mbfresfi 37648 ofoafg 43344 limcresiooub 45629 limcresioolb 45630 limcleqr 45631 limclner 45638 mbfres2cn 45945 fouriersw 46218 sge0less 46379 sge0ssre 46384 smfres 46777 |
| Copyright terms: Public domain | W3C validator |