MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresin Structured version   Visualization version   GIF version

Theorem fresin 6697
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)

Proof of Theorem fresin
StepHypRef Expression
1 inss1 4190 . . 3 (𝐴𝑋) ⊆ 𝐴
2 fssres 6694 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐴𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
31, 2mpan2 691 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
4 resres 5947 . . . 4 ((𝐹𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴𝑋))
5 ffn 6656 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnresdm 6605 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
75, 6syl 17 . . . . 5 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
87reseq1d 5933 . . . 4 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ 𝑋) = (𝐹𝑋))
94, 8eqtr3id 2778 . . 3 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)) = (𝐹𝑋))
109feq1d 6638 . 2 (𝐹:𝐴𝐵 → ((𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵 ↔ (𝐹𝑋):(𝐴𝑋)⟶𝐵))
113, 10mpbid 232 1 (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3904  wss 3905  cres 5625   Fn wfn 6481  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  o1res  15485  limcresi  25802  dvreslem  25826  dvres2lem  25827  noreson  27588  mbfresfi  37648  ofoafg  43330  limcresiooub  45627  limcresioolb  45628  limcleqr  45629  limclner  45636  mbfres2cn  45943  fouriersw  46216  sge0less  46377  sge0ssre  46382  smfres  46775
  Copyright terms: Public domain W3C validator