Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fresin | Structured version Visualization version GIF version |
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
fresin | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4143 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝐴 | |
2 | fssres 6585 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∩ 𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) |
4 | resres 5864 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴 ∩ 𝑋)) | |
5 | ffn 6545 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
6 | fnresdm 6496 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝐴) = 𝐹) |
8 | 7 | reseq1d 5850 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ 𝑋)) |
9 | 4, 8 | eqtr3id 2792 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)) = (𝐹 ↾ 𝑋)) |
10 | 9 | feq1d 6530 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵 ↔ (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵)) |
11 | 3, 10 | mpbid 235 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∩ cin 3865 ⊆ wss 3866 ↾ cres 5553 Fn wfn 6375 ⟶wf 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-fun 6382 df-fn 6383 df-f 6384 |
This theorem is referenced by: o1res 15121 limcresi 24782 dvreslem 24806 dvres2lem 24807 noreson 33600 mbfresfi 35560 limcresiooub 42858 limcresioolb 42859 limcleqr 42860 limclner 42867 mbfres2cn 43174 fouriersw 43447 sge0less 43605 sge0ssre 43610 smfres 43996 |
Copyright terms: Public domain | W3C validator |